Dynamic inheritance: a powerful mechanism for operating

system design

Benoit Sonntag, Dominique Colnet and Olivier Zendra

LORIA — INRIA Lorraine
615 Rue du Jardin Botanique, BP 101,
54602 Villers-Les-Nancy Cedex
FRANCE
Email: {bsonntag, colnet, zendra}@loria.fr

Abstract

The design of the Isaac operating system comes from
several years of reflexion and implementation on the
need for flexibility and dynamism in future operating
systems. Our goals progressively lead us towards the
object-oriented concepts. Prototype-based languages
appeared the most elegant manner to materialize our
vision of operating system. These, coupled with a pow-
erful language allowing changing inheritance dynami-
cally, made it possible to create the innovating Isaac
OS (http:www.Isaac0S.com).

Keywords: object-oriented language, prototype-
based language, operating system, dynamic inheri-
tance, Isaac

1 Introduction: the Isaac OS

project

The very nature of current operating systems comes
from studies, languages, hardware and require-
ments going back to about 20 years.

The evolution of programming languages cur-
rently fulfills nowadays data-processing needs and
constraints in terms of software design and pro-
duction. However, modern languages (i.e. object-
oriented languages), did not bring a real alternative
to procedural programming languages like C in the
development of modern operating systems. These
OSes require high performance in terms of execu-
tion speed and memory usage, but also simple, effi-
cient, internal low-level operations. We thus believe

that an object-oriented operating system should
not be on top of a virtual machine, but directly in-
stalled on hardware components, to reach the very
best performance. It is desirable and possible to
fully use the hardware in order to provide, at the
operating system level, services that are currently
supplied by software layers (type-oriented file sys-
tem, dynamic graphic management, dynamic link
between software components, common memory
buffers, ...).

Historically, during the creation of an operating
system, constraints related to hardware program-
ming have been systematically fulfilled with a low-
level language as the C language. This choice gen-
erally leads to a lack of flexibility that can be felt
at the application level.

The purpose of our Isaac OS project ([4]) is to
break with the internal rigidity of current OS ar-
chitecture that mainly depends, in our opinion, on
the low-level languages that have been used to write
them. Conversely, Isaac has been fully written with
a high-level prototype-based language and makes
full use of its powerful features. Although it is
conceptually close to the Merlin project (see [2]),
Isaac goes into a different direction. For example, it
does not rely on a virtual machine, but is compiled.
Moreover, we included in Isaac a hardware-enforced
protection mechanism (see [5]) and a distinction
between two kinds of objects, macro-objects and
micro-objects (see [6]).

We thus decided to create a new object-oriented,
prototype-based language called Lisaac (see [6]),

providing extra facilities for the implementation
of operating systems, such as privilege levels con-
trolled at the processor level, and dynamic inher-
itance. Lisaac is a powerful tool for the creation
of an efficient, flexible and cleanly design operating
system. In comparison with Self, our Lisaac lan-
guage is compiled, not executed on a VM. The qual-
ity of the binary code produced by a system-wide
analysis allows us to envision good performance for
the whole system.

In this paper, we speak mainly about dynamic
inheritance. The possible problems on the level of
the abnormal inheritance are partly detected dur-
ing compilation. The other problems are collected
at runtime during the lookup algorithm. The use of
the material exceptions makes it possible to man-
age the integrity of the system.

Our addition of flexibility with the dynamic in-
heritance is another approach of the reflection in
class-based languages (see [1]). The performances
of reflexivity are often to question (see [3]).

In the following sections, we focus on inheritance
— traditional inheritance and dynamic inheritance
as well — with three examples of its use in Lisaac
for the implementation of parts of the Isaac OS.

2 Hardware components ver-
sus software components

In the Isaac OS, each hardware component, like for
example a mouse or a screen is represented by its
corresponding prototype. When one wants to add
(or remove) some new hardware component at run-
time, this is achieved by adding (or removing) the
corresponding prototype simultaneously. What is
true for hardware object is also true for software
components. As an example a file or a bitmap
object is represented by its corresponding proto-
type (one prototype for each file and one prototype
for each bitmap object). For example, removing
some file is simply performed by removing the cor-
responding prototype from the universe.

As one may expect, the traditional inheritance
mechanism is useful to organize things, especially
for operating system design. In the object hierar-
chy for the Isaac system, true physical ”hardware
objects” (keyboard, mouse, memory, ...) are dis-
tinct from ” software objects” (file, vector, bitmap,

OBJECT

HARD OBJECT SOFT_OBJECT
@ @
MOUSE = =
MEMORY < <
SYSTEM g g
PROCESSCR o o
KEYBOARD 0 >
(o g2
g 3

Figure 1: Segregation between hardware compo-
nents and software components

...). In a very natural way, traditional inheritance
is used to separate these hardware objects from
software objects. The reason of this segregation
is that hardware objects are not clonable. For ex-
ample, a screen object can’t be cloned if there is
no new physical screen. Hardware components are
obviously critical resources. Conversely, software
components, SOFT_OBJECT (fig. 1), inherit the tra-
ditional Clone method. Also note that that both
SOFT_OBJECT and HARD_OBJECT inherit the most
common OBJECT prototype.

Traditional inheritance (like the one that can be
found in class-based languages e.g. Java) is largely
enough to implement segregation between hard-
ware and software objects. As we will see in the
next examples, when the organization is not as sim-
ple, dynamic inheritance, if not necessary, appears
to be a powerful tool.

3 Dynamic inheritance for

video drivers

Figure 2 represents the Isaac OS video architec-
ture. The VIDEO object can change dynamically
its parent slot to inherit BITMAP_15 or BITMAP_16
or BITMAP_24 or BITMAP_32 as well. Actually, dy-
namic inheritance is obviously used to dynamically
change the bitmap resolution. The reference to the
VIDEO object remains unchanged for clients allow-
ing the resolution mode to be changed transpar-

ently (i.e. only the parent slot of the VIDEO object
is modified).

Moreover, the VIDEO object can redefine any
BITMAP functionalities in order to take advantage
as much as possible of the hardware graphic device
(graphic accelerator embedded on the board, color
depth, ...).

The VIDEO object represents the hardware driver
for the physical video card. This object represen-
tation as numerous advantages:

e The methods called by a client on a SCREEN
object, which inherits from VIDEO, naturally
use the methods of the appropriate VIDEO
type. As the VIDEO object represents the video
driver, these methods are the most adapted
implementation to the physical video card.

e When the VIDEO object doesn’t redefine a
method A (such as RECTANGLE) but redefines
a method B which is used by A (such as LINE),
late binding causes the use of the method B of
VIDEO while using the method A of one of its
parents (BITMAP_15 or BITMAP_16 ...). This
has for interesting consequence the maximal
use of the performances of the video card at
every time.

e Another example, also related to inheritance
use in the graphic management, is that if we
add methods in the base object BITMAP, these
methods will be automatically usable by our
client object.

Lisaac offers the capacity to dynamically define
or redefine the parents of an object (see [6]). When
we define our client object SCREEN, the parent slot
is a block of code, which finds the reference object
representing the video driver. This block of code is
evaluated when the client object SCREEN is loaded.
Thus, the SCREEN object inherits the current video
card.

4 Dynamic inheritance for file
systems

The design of the file system is an important part of
an OS design. The Isaac OS does not define its own
disk format but uses existing ones: the windows
FAT or NTFS format or the Unix format based on

SOFT_OBJECT

f

Bl TVAP

Bl TMAP_15 Bl TMAP_16

VI DEO

!

SCREEN

BI TMAP_24 BI TMAP_32

Figure 2: Dynamic inheritance to select the appro-
priate VIDEO DRIVER.

inodes and blocks. As for all other system the disk
itself can be handled by a floppy disk controller or
with an IDE controller for example.

Once again, dynamic inheritance appears to be a
powerful tool to implement this aspect. As shown
on figure 3, a FILE object or a DIRECTORY ob-
ject inherit the abstract system-independent INODE
object. This abstract INODE object may inherit
FAT_16BITS when the corresponding file is on a win-
dows partition or may inherit EXT_2FS when the
corresponding file is on a Linux partition.

A comparable dynamic inheritance scheme is
used to determine the drive controller. Thus, the
inheritance link follows FLOPPY prototype when
the file is on some floppy disk or follows the IDE
prototype when the file is stored on some hard
disk. Thanks to dynamic inheritance, this link may
change at run time when the file is moved from the
floppy disk to the hard disk and conversely.

As explained previously each file is represented
by one prototype. This is also true for directo-
ries (each directory is associated with its own pro-
totype). Furthermore, the prototype structure is
used to add extra high-level information for files or
directories.

As an example, the content of a directory (i.e.
entries of the directory) is represented using one
slot for each entry of the directory. Thus, a DIREC-
TORY which contains one file ”foo” and one subdi-
rectory ”bar” has two corresponding slots, one to

HARD_CBJECT

/\

DRI VE FLOPPY_CONTROLER

FAT_12BI TS FAT_16BI TS FAT_32BI TS EXT2FS
1 NODE

T~

DI RECTORY FI LE

Figure 3: File system selection with dynamic in-
heritance

access the "foo” file and another to access the ”bar”
subdirectory. The prototype structure is directly
mapped on the content of the directory. Access
into the hierarchy of directories is achieved using
normal slot read-write operations.

Extra slots are also added for file prototypes in
order to add high-level semantic operations. First
the ‘buffer’ slot is always available for every FILE
prototypes. This slot gives access to the raw binary
content of the file. If the file has to be viewed as a
text file, a parent ‘txt’ slot can be added. Actually,
in order to avoid data redundancy, this ‘txt’ slot
is a third party object which convert the raw bi-
nary ‘buffer’ information into traditional text line
information.

In the same way, it is possible to add other par-
ent objects to handle extra high-level information.
As another example, if a file can also be viewed
as an HTML file, the ‘html’ slot is simply added
to the parent list. This way, the file can then be
manipulated easily by a WEB browser.

File and directory compression is also handled by
this powerful mechanism. For example, when some
file is compressed, a ‘zip’ parent is added dynami-
cally to the FILE prototype. Note that the memory

address of this FILE prototype is not changed. The
user of the file can still manipulate the content of
the file without knowing the fact that the file has
been compressed!

For users, all the files are accessible transparently
via a cache system. Of course, only the files actu-
ally in use are represented in memory at a given
time.

5 Conclusion

The set up of our Isaac operating system, led us
to conceive a new object-oriented language, called
Lisaac [6]. This Lisaac language, not described in
this paper, is uniform and very close to Self [7],
another prototype-based language.

Lisaac constitutes a powerful tool in the making
of an efficient, flexible, and cleanly design operat-
ing system. The architecture of our object operat-
ing system takes fully advantage of the possibilities
offered by prototypes and especially by dynamic
inheritance.

We have presented in this paper three main ex-
amples of inheritance usage from the Isaac operat-
ing system implementation. The first example of
section 2 use traditional, non-dynamic, inheritance
to separate hardware objects from software com-
ponents. The second example of section 3 present
dynamic inheritance used to implement graphical
video operations. Finally, the last example at sec-
tion 4 introduce the important problem of file sys-
tem management.

Thanks to the Isaac OS experiment, we are
now convinced that a prototype-based language like
Lisaac is a very good candidate to replace low-level
languages like C for operating system implementa-
tion.

Currently, Isaac is still very much in develop-
ment. Our prototype is thus not yet sufficiently ad-
vanced to carry out meaningful performance tests.
We thus still have to test the real performances of
Isaac OS compared to other systems.

References
[1] Daniel Barbou. Inheritance Hierarchy Auto-

matic (Re)organization and Prototype-based
languages. In Workshop 16, Objects and clas-

sification : a natural convergence, 14th Euro-
pean Conference on Object-Oriented Program-
ming, (ECOOP 2000), 2000.

[2] E. Morais J. Mattos de Assump-
cao, L. Campos de Carvalho.
http://www.lsi.usp.br/ jecel/merlin.html.
Site web: Merlin Home Page, The merlin
Object-Oriented System., 1998.

[3] Francisco Ortn Soler and Juan Manuel Cueva
Lovelle. Building a Completely Adaptable Re-
flective System. In jJth ECOOP Workshop
on Object-Orientation and Operating Systems
(ECOOP-O00SWS’2001), 2001.

[4] B. Sonntag. http://www.isaac0S.com. Site
web: Isaac (Object Operating System)., 2000.

[5] B. Sonntag. Article in French about: Us-
age of the processor memory segmentation
with a high-level language. In 2ime Con-
frence Franaise sur les systmes d’Exploitation,
(CFSE’2), pages 107-116. ACM Press, 2001.

[6] B. Sonntag and D. Colnet. Lisaac: the power
of simplicity at work for operating system. In
Technology of Object-Oriented Languages and
Systems, (TOOLS 2002), volume 10, pages 45—
52. Australian Computer Society Press, 2002.

[7] D. Ungar and R. Smith. Self: The Power of
Simplicity. In 2nd Annual ACM Conference on
Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’87), pages
227-241. ACM Press, 1987.

