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Abstract
From the perspective of integer numerical computation, a
good programming language should allow both safe, overflow-
free operations, and direct manipulation of processor-native
types, which are inherently limited in bit width and encoded
using two’s complement. Current 64-bit architectures of-
fer unprecedented low-level capabilities. For the first time
in computing history, the size of address registers greatly
exceeds the physical capacity of the memory bus. This dis-
crepancy leaves several unused bits that can be exploited to
design more compact and expressive data representations.
We present here a concrete implementation that lever-

ages these vacant bits to efficiently represent signed integers
within a single 64-bit memory word. Two variants are pro-
posed: one designed for hardware implementation, and the
other more suited to a software setting. In addition, both
representations make it possible to unify the encoding of
numbers using a single machine word, which also facilitates
the adoption of functional, rather than procedural, notation.
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1 Introduction
In the process of defining our Omega language [1], we have
carefully considered the implementation of numbers. Omega
(Ω) is a strongly typed language that offers both the type
Z, which represents signed integers with no limits other
than memory size, and a range of machine-specific integer
types such as Z8, Z16, Z32, and Z64, corresponding to signed
integers constrained to 8, 16, 32, and 64 bits, respectively.
It is crucial to ensure that numerical operations can be

handled without the risk of overflow for type Z, while also
leveraging machine-level data types when necessary (Z8,
Z16, Z32, etc.). The procedural use of type Z involves progres-
sively modifying the result of a calculation within the same
memory space, optimizing for performance. At the same
time, especially for beginners, it is important to offer a fully
functional paradigm that maintains a high level of perfor-
mance, ensuring flexibility and redability without sacrificing
efficiency.

∗Both authors contributed equally to this research.

2 The revenge of address registers
Several times in its history, in the competition to increase the
power of computers, we’ve seen the emergence of tricks to
first increase the size of the address bus before questioning
the whole architecture.
For example, the mythical Z80 processor [2], with its 8-

bit data bus and 16-bit addressing bus, should have been
limited to 64 KB of RAM. But, with its two-memory bank
access principle, the Amstrad 6128 [3] extends its memory
to 128KB, doubling the capacity of its predecessor, the 464.
As part of the 8086 family [4] with its 16-bit address reg-

ister architecture, this processor has been equipped with a
20-bit address bus thanks to the addition of segment registers.
The address is made up of a pair of registers {segment,offset}.
The offset provides access to a contiguous 64KB range in
memory. As for the segment registers, they allow memory
jumps in 16-byte steps. Thus, the segment registers provide
the 4 bits of high address required to reach the megabyte of
RAM (1 MB). The final address calculation is given by:

𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑅segment × 16 + 𝑅offset
After a brief appearance of 24-bit processors with the

80286, came the 32-bit 80386 architecture [5], with a bus
capable of addressing 4 GB of memory. But again, in the last
years of his reign, with a clever combination of segmentation
and pagination, the limit of this architecture has been pushed
back to 36-bit addressing.

Then came 64-bit architecture [6], which for the first time
in the history of computing has address registers that can
go far beyond the memory capacities currently physically
available. The astronomical number of 16 Eio (264 = 1.8𝑒19
bytes) that such a register could theoretically address is so
far out of reach, even in the distant future, that designers
preferred to truncate the logical address to 48 bits. In this ap-
parently arbitrary choice, the number of indirections needed
to manage pagination must also be taken into account. In
fact, with 4 KB pages, we have the 12 least significant bits
addressable contiguously, then 4 indirection tables of 9 bits
each must be consulted to reach a 48-bit physical address1.
So, quite surprisingly, this 48-bit logical address leaves

a 16-bit high-order range unused for each address pointer
location. In addition, we can observe that memory allocators
always allocate structures aligned at least with the machine
word size. So, if we consider a structure address, we also have
1512 entries for each indirection 4KB table: 29 × 64 bits = 4KB.
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the 3 least significant bits, which are always 0. Interestingly,
on a 64-bit architecture, all structure pointers have only 45
significant bits. However, their use requires a few precautions
before considering them as pointers. It’s worth noting that
using a mask with a binary-and (&) or a 3-bit binary shift to
the left (<<) are manipulations that have a marginal cost at
runtime. For each address, we therefore have 16 high-order
bits at our disposal, and potentially 3 low-order bits that are
free for other uses!

The thread running through this article is how best to use
these insignificant bits in addresses to store precise informa-
tion in a given context. This practice is already widely used
in the design of architectures and operating systems. For
example, in a pagination indirection table, each page address
is aligned on 4 KB, so the 12 least significant bits are ignored
when the MMU reads the page address. These 12 unused bits
contain other indicators, such as the right to write in this
very memory page. There are also other indicators defined
and used solely by the operating system.
Further away from hardware and operating systems, we

also find this kind of approach at the software level, or more
precisely at the language and compilation level in [7]. In
Bonds et al (1992), Tracking bad apples: Reporting the origin
of null and undefined value errors, the proposal is to internally
replace the Null value of a source program with deliberately
invalid pointers to encode information. Here, the information
is used to trace the origin of the Null in the event of an
application crash.

Let’s now look at how we can take advantage of all these
findings concerning address format, with the management
of numbers without overflow.

3 Towards integers that don’t overflow
For the vast majority of programming languages, built-in in-
teger types are limited to a certain size. For example, Java’s
int type is limited to 32 bits. A few rare cases of overflow
are sometimes detected by the Java compiler only when the
values are statically determinable. In all cases, no overflow
test is performed at runtime. In this way, a positive value
of type int can be made negative by simply incrementing
by 1. This is often surprising, especially for novice program-
mers, but can sometimes be used deliberately by experienced
developers.

Another example from a more recent language is Rust [8],
which notes this type i32 or u32 for the unsigned version. In
addition to the more appropriate type name, Rust in debug
mode only, offers overflow control. In release mode, over-
flow control is not performed. As you might expect, Rust’s
objective is to take full advantage of the processor’s power.
There are even specialized functions to bypass overflow prob-
lems regardless of the compilation mode2. For large numbers

2u32.wrapping_add, u64.wrapping_add, u64.wrapping_add_signed,
u64.wrapping_sub, etc.

without overflow, Rust also offers types such as BigInt or
BigUint.
Historically, Smalltalk was the first language to natively

integrate the concept of an integer that never overflows. This
choice is perfectly understandable in terms of comfort for
programmers and for people unfamiliar with hardware con-
straints. For Python [9], which is also interpreted, the choice
is similar to Smalltalk: no possible overflow and numbers
that can grow in memory size as and when required. In our
opinion, there are two major drawbacks to this choice: slow-
ness and the impossibility of easily taking hardware into
account.

3.1 Hardware limited types and flexible general type
In the Smalltalk language virtual machine [10], each 32-bit
word representing an object is split into two parts. The first
part stores the information in 30 bits, the remaining two bits
being the object’s basic type. We therefore have 4 internal
object categories, one of which is reserved for a small 30-
bit integer. At runtime, if a calculation exceeds 30 bits, the
small integer becomes a complex object with a pointer to
model a larger integer via a real object which uses an array.
Smalltalk’s object architecture was particularly well thought-
out for its time, in the context of a 32-bit architecture and
a pure, non-statically typed object environment. However,
we can only note a 30-bit address limit representing only 1
GB of accessible memory. We’ve taken inspiration from this
type of partitioning in the context of 64-bit architecture on
a compiled language with static typing.
A good programming language needs to offer both pro-

gramming comfort and full hardware speed. The choice of
the Rust language, which makes it possible to preserve types
that can exactly match the characteristics of the hardware,
must be maintained (i.e. built-in types i8, i32 and i64 for
signed and built-in types u8, u32 and u64 for unsigned).
Rather than resorting to general types specialized in han-
dling numbers without overflow, we propose a hybrid so-
lution that allows, according to variations in calculations,
to retain almost all the power of the small, limited num-
bers that exist natively. In fact, depending on the evolution
of calculations, for example, two very large numbers that
are subtracted from each other can return to the 32-bit rep-
resentation interval. In such a case, it’s interesting to get
closer to the performance of native types for the result of
this operation.

Unlike Smalltalk, which is completely and uniquely typed
at runtime, we’re working with a statically typed language.
For our proposal, it doesn’t matter whether the typing is
explicit or based on type inference. Knowing that a given
variable can only contain signed integers means that we can
reuse the Smalltalk implementation idea with less variability
in the entities represented. So, unlike Smalltalk, and thanks
to static typing, we have the whole machine word to best
encode our integer. In the following, we’ll assume that the



Managing Multiple Precision Integer Data on Modern 64-Bit Architectures

programming language offers a native type for handling
signed integers, which we’ll call Z. The idea is to always use
a 64-bit machine word for any variable of type Z.

4 Hardware Oriented Solution
Internally, and completely transparently to the user, there
are three possible representations for the Z type. The aim is
to make the most of 64-bit and get the best performance out
of it. The choice between these 3 representations is directly
related to the size of the integer you need to model. Figure
1 illustrates the following explanations of our 3 encoding
formats for integers.

4.1 Value requires less than 64 bits - Top of figure 1
The first encoding format is for a small integer that can be
encoded on 63 bits, that is in two’s complement the range
from (−262) to (262 − 1). This format is distinguished from
the other two by the most significant bit being set to 0. Unsur-
prisingly, the use of the other 63 least significant bits stores
our integer using two’s complement representation. With a
barely perceptible increase in computing time compared to
using a 64-bit rawmachine word, it enables fast management
of small integers. As with Smalltalk, when this capacity is
exceeded, we dynamically migrate the integer to the second
format.

4.2 Value requires 64 to 220 bits - Middle of figure 1
The second format for the Z type is the most complex and
is particularly compact. It can encode integers requiring a
maximum of 16384 × 64 bits (i.e. an integer of 131 072 bytes
or 1 Mbits). Thanks to its already particularly wide range,
it’s more than sufficient for most applications. The 64-bit
machine word representing the integer stores 3 pieces of
information:
• The address of a contiguous memory area containing
the integer using word of 64 bits.
• The maximum capacity of this memory area. If neces-
sary, the memory area is reallocated with a capacity
twice that of the previous one3.
• The size actually used in the memory area. In other
words, the number of machine words needed to rep-
resent the integer in binary form.

The distribution of information within the 64 bits is as
follows:

63 Set to 1 to avoid being identified as the previously
described encoding for small values.

59-62 The capacity in power of 2. This 4-bit number can
be used to encode capacities ranging from 20 to 214.
Setting the 4 bits to 1 (215) is forbidden, and we reserve
this value to identify the next encoding format. We

3The well-known heuristic of doubling the capacity of a dynamic array is
especially relevant to our use case. In this case, the multiplication of two
𝑛-bit integers uses 2 × 𝑛 bits.

therefore have an array with a maximum capacity of
16384 64-bit cells.

45-58 This 14-bit range encodes the exact size actually used,
from 1 to 16384.

0-44 A 45-bit range representing the address of the corre-
sponding allocated area. As this area is 64-bit aligned,
a 3-bit left shift gives the exact 48-bit valid address.

4.3 Requires More than 220 bits - Bottom of figure 1
The last format for type Z is shown at the bottom of figure
1 and is of a more standard design. It is identified by the
presence of 1 on all bits from 59 to 63. The least significant
part of the first 48 bits is an address to a standard object
structure. The corresponding object contains a capacity,
size and storage field for the usual implementation of a
dynamic size array containing the huge integer4.

4.4 Decoding Algorithm of figure 1
Algorithm 1 illustrates in pseudo-code the decoding of differ-
ent formats of the type Z. In this algorithm𝑊 is the machine

Algorithm 1 Decoding Algorithm (hardware-oriented)
if (𝑊 ≥ 0) then
// Less than 64 bits (top fig. 1)
𝐼𝑁𝑇 ← ((((𝑠𝑖𝑔𝑛𝑒𝑑64)𝑊 ) ≪ 1) ≫ 1)

else
𝑐𝑎𝑝 ← (𝑊 ≫ 59) & Fℎ
if (𝑐𝑎𝑝 = 1111𝑏) then

//More than 220 bits (bottom fig. 1)
𝑎 ←𝑊 & FFFF FFFF FFFFℎ
𝑏𝑢𝑓 ← 𝑎.storage
𝑠𝑖𝑧 ← 𝑎.size
𝑐𝑎𝑝 ← 𝑎.capacity

else
// Range 64 to 220 bits (middle fig. 1)
𝑏𝑢𝑓 ← (𝑊 & 1FFF FFFF FFFFℎ) ≪ 3
𝑠𝑖𝑧 ← ((𝑊 ≫ 45) & 3FFFℎ) + 1
𝑐𝑎𝑝 ← 1 ≪ 𝑐𝑎𝑝

end if
𝐼𝑁𝑇 ← tab(𝑏𝑢𝑓 , 𝑠𝑖𝑧, 𝑐𝑎𝑝)

end if

word representing the integer encoded in one of the 3 for-
mats, and 𝐼𝑁𝑇 represents bit access to the integer. Note that
when using a small integer of less than 64 bits, the extra
cost compared to the standard 64-bit basic type is just sign
detection (or the position of bit 63) and a jump.

Note also that our representation is deliberately canonical.
Depending on its size in number of bits, a given number has
to be represented in just one of the three memory formats.
This makes it easy to compare numbers with each other. In
4This representation is named ArrayList in the Java library. In C++ this
data structure is also known as std::vector.
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14 bits s 45 bits Storage Area Memory Address
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Bottom - The Integer Needs more 2  bits
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1 1 1 1
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1
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.......
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.......

....

Figure 1. The three memory representations for a variable of type Z, depending on the number of bits required for the value.

particular, the comparison between two small numbers (i.e.
less than 64 bits) is made with the usual machine instruction
for comparing two memory words.
However, this solution has a major drawback, especially

when performing a binary operation. It is crucial to deter-
mine whether both operands are in the small format, the
medium format, or if they belong to different formats. With
three possible formats for each operand, this leads to six
cases to handle. Moreover, the unpredictability of the format
in which the result will be encoded further slows down the
computation. That said, this very compact format could ben-
efit from a particularly efficient hardware implementation
thanks to the parallelization of encoding and decoding op-
erations. In the next section, we introduce a representation
that is better suited to a purely software implementation.

5 Software Oriented Representation
The solution we have chosen allows for an efficient imple-
mentation, even when only software-based tagging is avail-
able. This is therefore a purely sequential case study. The
approach consists in deliberately limiting ourselves to two
cases, while still retaining the ability to represent very large
numbers. As in the previous representation, a variable of
type Z always corresponds to a 64-bit memory location, that
is, a single machine word. Figure 2 illustrates the two pos-
sible representations of a Z variable, where only the least
significant bit serves as the selector. When this bit is equal
to 0, the number lies within the range [−(262 − 1), (262 − 1)].
Conversely, if this bit is equal to 1, the number lies outside
this range.

5.1 Small Integer - Top of figure 2
When the least significant bit is 0, a simple arithmetic right
shift by one position is sufficient to obtain the corresponding
64-bit value.

5.2 Large Integer - Bottom of figure 2
When the least significant bit is 1, this indicates that the
value lies outside the interval [−(262 − 1), (262 − 1)]. In this
case, the absolute value of the signed integer is stored in a
separate memory area, organized as an array of 64-bit words.
A pointer to this memory area is encoded in the lower 48
bits of the memory word corresponding to the Z variable.
Bits 48 to 55 (see Figure 2) contain a value 𝑐𝑎𝑝 , which is
used to compute the capacity of the memory area, denoted
as capacity, according to the formula capacity = 2𝑐𝑎𝑝 . The
capacity index corresponds to the last slot of the storage
array.

This 𝑐𝑎𝑝 value also makes it possible to retrieve the size of
the allocated memory block, particularly during deallocation
or reallocation. Since the storage area may be only partially
used, the size variable is stored at index −1 of this memory
region.

Regarding capacity management, we follow the same ap-
proach as in [11]: the size of the memory area is systemati-
cally doubled whenever a resize is needed. As a result, the
capacity is always a power of 2.
Given that 𝑐𝑎𝑝 is constrained to the interval [1, 255], the

capacity can range from 21 to 2255 64-bit words, which far
exceeds the capabilities of current hardware architectures.

5.3 Decoding Algorithm of figure 2
Algorithm 2 illustrates in pseudo-code the decoding of the
two different formats of the type Z. In this algorithm 𝑊
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Integer Sign Bit

48 bits Storage Area Memory Address
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The Integer Is Not Into

 [-(2 -1), (2 -1)]
62 62

 [-(2 -1), (2 -1)]
62 62

Figure 2. The two memory mappings of type Z based on necessary bit count: top of figure small values, otherwise bottom.

Algorithm 2 Decoding Algorithm (software-oriented)
if (𝑊&1) then
// Not Within [−(262 − 1), (262 − 1)] (bottom of fig. 2)
𝑐𝑎𝑝 ← 1 ≪ ((𝑊 ≫ 48) & Fℎ)
𝑏𝑢𝑓 ←𝑊 & FFFF FFFF FFFDℎ
𝑠𝑖𝑧 ← 𝑏𝑢𝑓 [−1]
𝐼𝑁𝑇 ← tab(𝑏𝑢𝑓 , 𝑠𝑖𝑧, 𝑐𝑎𝑝)

else
// Within [−(262 − 1), (262 − 1)] (top of figure 2)
𝐼𝑁𝑇 ← (((𝑠𝑖𝑔𝑛𝑒𝑑64)𝑊 ) ≫ 1)

end if

is the machine word representing the integer encoded in
one of the two formats, and 𝐼𝑁𝑇 represents bit access to
the integer. Note also that our representation is deliberately
canonical. Depending on whether it lies within the inter-
val or not [−(262 − 1), (262 − 1)], a given number has to
be represented in just one of the two memory format. This
makes it easy to compare numbers with each other. In par-
ticular, the comparison between two small numbers (i.e. less
than 64 bits) is made with the usual machine instruction for
comparing two memory words.

6 Benchmarks
This section presents a set of measurements we performed
to evaluate the Z type representation in our Ω language.
Comparisons were made against GMP [12], which is arguably
the fastest library for exact-precision arithmetic [13] [14].
Moreover, since the Ω language generates C code and GMP
is also implemented in C, this comparison is particularly
relevant. Achieving performance even modestly close to that
of GMP already represents a significant challenge. We also
included 𝑚𝑖𝑛𝑖GMP [15] in these benchmarks, providing an
additional point of comparison.

Naturally, we remain focused on our initial objective: inte-
grating into our Ω language a type that allows manipulation
of signed integers using functional notation. In other words,
providing syntax that is close to mathematical expressions.
For example, in Ω, the instruction 𝑎 𝑏 + 𝑐 avoids the

need to manually manage memory allocation for the result.
In contrast, GMP is designed for procedural use, relying on
accumulators that are modified across successive operations.
Thus, with GMP, the previous instruction would correspond
to the procedural call mpz_add(a,b,c); where the memory
space for the result must have been allocated beforehand.

For all the benchmarks presented below, we systematically
perform the same number of operations for each type. We
use exactly the same operand values regardless of the library
used: whether it is Z, GMP, or𝑚𝑖𝑛𝑖GMP. To avoid disadvantag-
ing GMP and to follow its best practices, the three variables
a, b, and c are reused throughout the computations, rather
than reallocated before each operation. Finally, we also used
GMP to verify the correctness of the computations performed
by the Z library in our new Ω language5.

6.1 Benchmarks Using Small Values (63 bits)
All the benchmarks presented in this section concern what
we refer to as small values, that is, values that fit within 63
bits. The relevance of testing this range of values is twofold.
First, it allows us to include the Z64 type, which corresponds
exactly to the 64-bit signed integer type supported by the
processor6. Second, it allows us to evaluate the 63-bit value
representation (top part of Figure 2), and thereby quantify
any potential loss in execution speed compared to the Z64
type. Finally, it also enables us to quantify the performance
gain compared to the GMP implementation, which is particu-
larly well-suited for large numbers, but not necessarily for
such small values.
We compare the following operations: addition (Fig. 3),

subtraction (Fig. 4), multiplication (Fig. 5), division (Fig. 6),
left shift (Fig. 7), and finally right shift (Fig. 8). For each oper-
ation, we always perform the same number of computations,
in order to compare the differences in execution time. In the

5Being able to rely on a well-established library like GMP, both for perfor-
mance and correctness, greatly facilitates the debugging of a new library
such as the one provided by our Ω language.
6The Z64 type in the Ω language corresponds exactly to the int64_t type
in the C language, which is often equivalent to long on most architectures.
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Figure 3. Addition of Small Values (63 bits).
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Figure 4. Substraction of Small Values (63 bits).
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Figure 5. Multiplication of Small Values (63 bits).

31.8

40.9

94.3

295minigmp

GMP
Z

Z64

0 100 200 300
(Clock Tics) / 100000 

Figure 6. Division of Small Values (63 bits).

graphs below, and to facilitate comparison, we consistently
assign the same color to each of the types used.
The first test, illustrated in Figure 3, focuses on addition

for all types, including the Z64 type, which is naturally the
fastest. It is important to note that the Z64 type does not
check for potential overflows, which also explains its high
performance.
Somewhat disappointingly, GMP performs almost identi-

cally to𝑚𝑖𝑛𝑖GMP for these very small values, which is rather
unexpected or at least unusual. In contrast, the Z type stands
out for its performance, ranking second after Z64, but clearly
ahead of both GMP and𝑚𝑖𝑛𝑖GMP. For reference, this test con-
sists of performing 500 million additions. All tests are exe-
cuted on the same computer, fully dedicated to these bench-
marks. Each test is repeated 10 times for each type, and the
reported time corresponds to the minimum number of clock
cycles measured.

The test shown in Figure 4 focuses on subtraction and was
carried out under the same conditions as before: on the same
machine, with 500 million operations as well. Unsurprisingly,
the results are similar to those observed for addition, with

2.62
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31.6

32.1GMP

minigmp

Z

Z64

0 10 20 30
(Clock Tics) / 100000 

Figure 7. Left shift of Small Values (63 bits).
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33.1minigmp

GMP
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Z64
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(Clock Tics) / 100000 

Figure 8. Right shift of Small Values (63 bits).

the Z64 type remaining by far the fastest. It is worth noting,
however, that for all tested types, subtraction consistently
takes more time than addition. For the Z, GMP, and𝑚𝑖𝑛𝑖GMP
types, this can be explained by the need to explicitly handle
potential overflows. In contrast, for the Z64 type, this perfor-
mance gap is more surprising, since addition and subtraction
are normally handled by the same hardware circuit using
two’s complement logic.
Figure 5 shows the comparison of multiplication perfor-

mance for all types, including Z64, which again proves to
be the fastest. For the Z64 type, it is worth noting that the
execution time for multiplication remains fairly close to the
reference time, which is that of addition. For the other types,
computation time deteriorates noticeably in the case of mul-
tiplication. In this context, GMP clearly outperforms𝑚𝑖𝑛𝑖GMP.

Figure 6 presents the comparison of division performance.
Here again, and not unexpectedly, the ranking remains the
same, although the gap between GMP and𝑚𝑖𝑛𝑖GMP is partic-
ularly pronounced. Once more, the performance difference
between Z and GMP remains significant.

To conclude this test on small values, Figures 7 and 8 show
the results for left and right bit shifts. Here again, since we
are dealing with small values, the Z64 and Z types are clearly
faster.

6.2 Comparing to a Small Compile-Time Constant

1.5

1.5

1.75

2.8minigmp

GMP
Z

Z64

0 1 2
(Clock Tics) / 100000 

Figure 9. Testing equality with zero for a general value.

In numerical computations, comparing a value to a small
fixed constant—especially to zero—is a common operation.
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The representation used for the Z type encodes the value
zero by setting all bits to zero, exactly as the native Z64 type
does, i.e., following the processor’s native representation.
As a result, the C code used to test for equality with zero
is strictly identical for both Z and Z64 types. Given the fre-
quency and importance of this operation, the GMP library
provides a dedicated function: mpz_sgn. Figure 9 shows the
execution times for 500 million zero comparisons, performed
on the same machine as in the previous experiments. We
observe that the mpz_sgn implementation in GMP delivers
excellent performance, very close to that of the native type.
The result obtained with𝑚𝑖𝑛𝑖GMP is slightly slower, but still
very reasonable in the case of a comparison with zero.

1.75

1.75

10.3

14.1GMP

minigmp

Z

Z64

0 5 10
(Clock Tics) / 100000 

Figure 10. Testing equality with a small nonzero value.

For comparisons with a small constant value, different
from zero but known statically, the representation chosen
for the Z type also enables performance identical to that of
the native Z64 type. For example, when comparing with the
value 2, the Ω compiler can directly generate a comparison
instruction using the left-shifted value 4, which corresponds
to the internal representation of 2 in the Z type. As a result,
the operation remains as efficient as with a native integer. In
contrast, such an optimization is not possible with the GMP
library. It requires the use of the mpz_cmp function, which
is more general in behavior but also more costly in terms of
performance. Figure 10 shows the execution times for this
type of comparison.
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Figure 11. Comparison test: large vs. small value.

In the case of a comparison (<, >, ≤, ≥) between a large
number and a small one, the representation adopted for the
Z type also proves to be highly efficient, as illustrated in
Figure 11.

6.3 Benchmarks Using Large Values (256 bits)
In this section, we repeat most of the tests previously per-
formed (i.e., all except the specific case of comparisons), using
operands consisting of 4 words on a 64-bit architecture, that
is, signed integers requiring 256 bits. To allow comparison
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Figure 12. Addition of Large Values (256 bits).
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Figure 13. Substraction of Large Values (256 bits).
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Figure 14.Multiplications of Large Values (256 bits).
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Figure 15. Division of Large Values (256 bits).

with the operands used in the previous section, we perform
the same number of operations, namely 500 million, under
the same conditions and on the same machine. Naturally, the
Z64 type can no longer be used, as it is inherently limited to
64-bit integers.
Figures 12 to 17 show the results we obtained. This time,

and not too surprisingly — though without the difference
becoming dramatic — the situation is reversed. As expected,
GMP achieves the best overall performance. However, it is
worth noting that in the case of subtraction (figure 13), some-
what surprisingly,𝑚𝑖𝑛𝑖GMP performs on par with GMP.

6.4 Benchmarks Using Huge Values (220 bits)
In this section, we revisit the previous benchmarks using val-
ues that can be considered quite large, specifically operands
of 220 bits7.

7GMP allows computations on integers of virtually arbitrary size, limited
only by the available memory. On 64-bit platforms, the theoretical limit is
around 237 bits (approximately 137 billion bits, or 17 GB of data), due to the
internal use of a 32-bit signed integer to represent the number of limbs.
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Figure 16. Shift left of Large Values (256 bits).
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Figure 17. Shift Right of Large Values (256 bits).
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Figure 18. Addition of Huge Values (220 bits).
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Figure 19. Substraction of Huge Values (220 bits).

For such values, and as expected, GMP demonstrates its
full power, especially for fundamental operations such as
addition (Fig.18) and subtraction (Fig.19).

As in previous experiments, each test involves 500 million
operations and is run on the same machine. This consistency
allows us to observe how computation time evolves with
operand size. For instance, in the case of addition: small val-
ues (Fig.3), large values (Fig.12), and extremely large values
(Fig. 18).

Interestingly, for certain operations, the Z type is able to
match or even outperform the excellent performance of GMP.
This is particularly evident in shift operations (Figs. 22 and
23). As for multiplication (Fig. 20), the results suggest a pos-
sible performance issue in GMP, as even𝑚𝑖𝑛𝑖GMP performs
slightly better in this case.

6.5 Comparison with other programming languages.
In this section, we compare the four types previously evalu-
ated —Z64, Z, GMP, and𝑚𝑖𝑛𝑖GMP— with other languages that,
when possible, support a native functional notation. The
benchmarking protocol is identical across all languages.
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Figure 20.Multiplication of Huge Values (220 bits).
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Figure 21. Division of Huge Values (220 bits).
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Figure 22. Shift Left of Huge Values (220 bits).
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Figure 23. Shift Right of Huge Values (220 bits).

It consists in running a command-line program with two
parameters: the first specifies the number of iterations, and
the second the increment value. The program follows a sim-
ple logic: starting from an initial value of 0, it performs
repeated additions by the given increment, as many times as
specified by the first parameter. Finally, it prints the resulting
value to ensure that the computation is actually performed.
This safeguard is necessary, as some compilers apply aggres-
sive optimizations and might eliminate computations whose
results are not used.
Moreover, passing parameters via the command line pre-

vents any compile-time evaluation by the compiler. Our goal
is to assess the execution speed of arithmetic operations
themselves, not the ability of compilers to optimize away
redundant calculations.
While preparing this comparison test, we observed that

for all the modern languages we tested, execution time de-
teriorates rapidly as the size of the manipulated numbers
increases—sometimes drastically so. In fact, as soon as the
resulting number reaches or exceeds 512 bits in size, GMP sig-
nificantly outperforms every other language we evaluated.
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Figure 24. Comparison with other programming languages.

This confirms that GMP remains the most efficient library
for high-precision integer arithmetic8.
Therefore, for each language, we performed three tests

by varying only the increment value. The number of itera-
tions passed as an argument remained unchanged from the
previous benchmarks—i.e., 500 million additions.

The first test stops at a result that fits within 32 bits. The
second reaches a 64-bit value, and the third one goes up to a
120-bit value. The results are shown in Figure 24. The color
scheme for the bars remains consistent for our four types,
while the new languages are represented in gray.

7 Conclusion
Since the advent of 64-bit architectures, it has been well un-
derstood that they lead to a mechanical increase in the size
of executables and data structures compared to 32-bit archi-
tectures. Part of this increase stems from memory alignment
constraints, while another part is due to the size of pointers,
which are stored on 64 bits even though they effectively use
only 48 significant bits.
8As mentioned in [13], the general-purpose arbitrary-precision integer
library GMP is often faster than specialized cryptographic libraries such as
OpenSSL or MIRACL. Also cited in [13]: "Software like Crypto++, BorZoi,
or OpenSSL is tailored for cryptography, but a general-purpose arbitrary-
precision library like GMP is often superior in terms of performance (see
for example http://gmplib.org/32vs64.html)."

Moreover, since pointers are generally aligned to word
boundaries, the last three bits of a 64-bit word address are
consistently unused. Overall, between 16 and 19 bits are
wasted for every pointer stored in main memory.

This observation has motivated the design of two compact
representations for memory information. The first, described
in Section 4, is designed for a hardware-oriented implemen-
tation and allows storing the address of a memory region
in just 45 bits. The second, presented in Section 5, is more
suitable for a software implementation. This latter approach
is the one used in our performance measurements.

The advantage of this representation is that it enables stor-
ing either a small value or a pointer to an auxiliary memory
region within a single machine word, without requiring ad-
ditional external memory. This not only allows for a uniform
and compact representation of data structures such as num-
ber matrices, but also enables a natural functional notation
for our Ω language [1].
In this paper, we have proposed an implementation that

preserves a functional notation while maintaining precision
in computations involving signed integers. It leverages the
fact that memory addresses are effectively limited to 48 bits
on 64-bit architectures.

http://gmplib.org/32vs64.html
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Compared to GMP, when working with small values, our
approach provides a significant performance gain. In ad-
dition, overflow issues become a low-level concern, often
transparent to most programmers.
Finally, this optimization could also benefit procedural

libraries such as GMP, which could adopt this approach to
replace their current implementation. Performance on very
large numbers would remain unaffected, while computa-
tions involving small values would be considerably faster.
In particular, when numerical computations operate on val-
ues smaller than 261, performance improvements become
clearly measurable, as shown by the benchmarks presented
in this paper. Performance gains are also observed in equality
comparisons involving small values, where this technique
achieves the best results (see Fig. 10).
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