SOFTWARE - PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2014; 44:565-592
Published online 26 November 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2174

Efficient compilation strategy for object-oriented languages
under the closed-world assumption

Benoit Sonntag!* and Dominique Colnet®* "%

VLSIIT, Université de Strasbourg, Illkirch, France
ZLORIA, Université de Lorraine, Vandeeuvre-lés-Nancy, France

SUMMARY

Reaching the best level of runtime performance from a high-level, object-oriented language is often
considered challenging if not unattainable. The closed-world assumption involves considering all of the
source code of an application together at compile time. That assumption makes it possible to produce an
efficient code. For instance, multiple inheritance can be implemented as efficiently as single inheritance. Our
compilation strategy is the result of a prolonged project, tying together several compilation techniques: call
graph analysis, dead code elimination, type flow analysis, code customization, implementation of dynamic
dispatch, inlining, pointer optimization, switch optimization, objects layout, and so on. Merging all of these
techniques into a global strategy appears to be quite problematic. Throughout the paper, two real-world
compilers are used as benchmarks to provide measurements for compiler writers to evaluate the applica-
bility of our approach. Type flow analysis is a fundamental aspect of our strategy to resolve method calls.
We have extended type flow analysis to deal with the content of arrays, enabling us to process additional
expressions and thus making it possible to obtain a true global analysis. Typically, more than 90% of method
call sites are statically resolved. Our experience indicates that the closed-world assumption is suitable for
numerous applications. Surprisingly, even library-defined control statements from dynamic languages are
perfectly processed with our strategy. The Smalltalk 1fTrue:ifFalse:, whileTrue:, to:do:, and
so on are, for the very first time, perfectly translated. Copyright © 2012 John Wiley & Sons, Ltd.

Received 20 May 2010; Revised 5 November 2012; Accepted 5 November 2012

KEY WORDS: object-oriented; compiler; type flow analysis; dynamic dispatch; code customization; inlining

1. INTRODUCTION

When considering software organization, software reliability, or software modularity, object-
oriented technology is currently the most popular way to meet all those requirements. On the
other hand, there is substantially less consensus about the performance of object-oriented language.
Many high-level, object-oriented languages do not have a good reputation for runtime perfor-
mance. For many people, achieving the best runtime performance requires using C language or even
assembly code.

Our results from working on the SmartEiffel and Lisaac compilers indicate that the previous asser-
tion is far from obvious. When the application is very small, it is highly likely that C or assembly
code is the best choice. As soon as the application is of medium or large size, we believe that a high-
level, object-oriented language would be the best candidate, knowing that the compiler is a crucial

*Correspondence to: Dominique Colnet, LORIA, Campus Scientifique, BP 239, 54506 Vandceuvre-les-Nancy Cedex,
France.

TE-mail: Dominique.Colnet@loria.fr

Lisaac project leader, http://www.lisaac.org

$SmartEiffel project leader, http:/SmartEiffel.loria.fr

Copyright © 2012 John Wiley & Sons, Ltd.

566 B. SONNTAG AND D. COLNET

ingredient for success. Without claiming that object-oriented programming eliminates all of the dis-
advantages, we now believe that C could be omitted in many situations to improve productivity. This
article presents our compilation strategy, which is suitable for several object-oriented languages.
This efficient strategy is the result of many years of effort, first on the SmartEiffel compiler
(formerly called SmallEiffel) and then on the Lisaac compiler. Both whose foundation in designs
and implementations are deeply focused on ensuring runtime efficiency.

1.1. Context of our work: the SmartEiffel and Lisaac background

The work on the Lisaac language [1, 2] and compiler grew out of the work on the SmartEiffel
compiler [3]. From the beginning, the SmartEiffel compiler has used global analysis. Keeping the
global compilation technique, Lisaac has added type flow optimizations, hence improving code cus-
tomization. Both compilers assume knowledge of all the source code during compilation. Adding
new source code during runtime is forbidden. Thanks to the encouraging results of SmartEiffel,
we decided to focus mostly on static optimizations, leveraging global program analysis. From the
language point of view, SmartEiffel and Lisaac consider all types of data, such as booleans, integers,
and pixels, as true objects. Furthermore, Lisaac, like Smalltalk [4] or Self [5, 6], also defines loops
and conditional statements as part of the library. Block closures are also handled. Both languages
are high-level, object-oriented languages featuring multiple inheritance. Being a prototype-based
language, Lisaac is also a strongly typed language. Most of the work performed for SmartEiffel
and Lisaac concerns high-level, object-oriented optimizations. The compilation strategy for inheri-
tance and dynamic dispatch is a key point for object-oriented languages. Type flow analysis, mixed
together with code customization and inlining, allows us to statically bind many method calls and
is also used to predict a possible null pointer inside arrays. Low-level optimizations such as register
allocation or loop unrolling are supposed to be applied after our high-level compilation strategy;
however, to simplify the presentation, we use C as a target language.

1.2. Open-world versus closed-world assumption

Compiling under the closed-world assumption (CWA) means that the compiler is able to access the
entire source code of the application to compile. Under CWA, not only are the classes and methods
of the application considered but also the classes and methods of the libraries the application uses.
Dead code, unused classes or unused methods, can be ignored and removed. Under CWA, no new
code is supposed to be added after compilation time. Conversely, under the open-world assump-
tion (OWA), new classes or subclasses may be added at any time. OWA is thus naturally associated
with separate compilation, dynamic loading, and incremental development of code. As indicated in
[7-11], it is well known that the main benefit of CWA is runtime efficiency. All method calls or
attribute accesses can be customized prior to execution. Under CWA, multiple inheritance does not
incur any overhead when compared with single inheritance. The code can be customized according
to its real usage, and dynamic dispatch can be implemented using a hard-coded dispatch mechanism.

It is possible to use CWA for languages such as C++ and C# or for a large subset of Java (the
most significant omissions are dynamic class loading and reflection as in [12]). Using CWA is more
problematic for languages such as Smalltalk, Self, or Lisp because in these dynamic languages, new
source code is likely to be a result of computation. Even if the language allows dynamic source
code creation, many written applications do not use that feature. As an example, a Lisp application,
which does not create new functions at runtime, can be compiled under CWA.

1.3. Global overview of our compilation process

Following the SmartEiffel compiler’s strategy [3, 13—15], the Lisaac compiler also performs a global
program analysis. Therefore, all the live code is considered to maximize type analysis for each
method call site. Thanks to type flow analysis, the Lisaac compiler improves the type analysis of
SmartEiffel by reducing the set of all possible types for each method call site as much as possible.
Our compilation strategy features three major steps (Figure 1):

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION

Lisaac source code

Transitive closure of the call graph using
type flow analysis. At the end of this step,
all the reachable code is gathered and
each expression is tagged with a set of
possible dynamic types including the NULL
type. During last pass, all type sets are
stable.

Gathering
the live code

Stable ?

First step

section 2
of the article

567

yes

Second step

Methods customization. Implementation of
dynamic dispatch using branching code.

Optimizing the with flow

Type flow analysis and inlining of method Closed Universe analysis section 3
calls. At the end of each pass, the dynamic :
type set of each expression is more and of the article
more accurate. During the last pass, Stable ?
all type sets are stable.
yes
Third step

section 4
of the article

Object layout and type ids selection.
Branching code, switch, optimizations.

Back-end

Optimizations

Machine code / C code

Figure 1. Global overview of our three steps compilation process.

First step. Gathering the live code. Using several passes, we aim to gather enough code to ensure
that all the reachable code is included. Roughly, each pass of this step performs a transitive closure
of the call graph. During each pass, each expression is tagged with a set of possible dynamic types.
Each pass makes the type set of each expression bigger and bigger until a fixed point is reached.
Adding a new dynamic type can make a new method attainable, which may eventually result in
the addition of new types. Medium-size applications usually require 6 to 10 passes, whereas large
applications, such as the compiler itself, requires approximately 30 passes to reach a fixed point.

Second step. Reduction and optimization of the live code. Using the dynamic type information
gathered during step 1, we replace dynamic dispatch with branching code to make new type flow
information available. Then, each pass reconsiders all the live code in an attempt to remove the code
that is no longer reachable or attempting to inline the reachable code. At the end of each pass, the
type set of each expression is increasingly more accurate by type-set reduction until reaching a fixed
point. The closer we get to the end of the process, the more precise our type analysis is. A fixed point
is reached when no further inlining or transforming is possible. For large-size applications such as
the compiler itself, the number of passes varies between approximately 10 and 25.

Third step. Final target code generation. During this last step, the field layouts into data structures
representing objects are optimized. Objects that are not involved in dynamic dispatches are not
equipped with the type id field. Only the used fields are generated and ordered to reduce object size.
Even after these steps, some dynamic dispatch may remain, so dynamic type ids are also selected
during this final step to compact switch dispatch tables.

1.4. Article overview and major contributions of the article

Section 2 details how the reachable code is gathered during the first step of our compilation strategy.
Section 2.1 starts with the rather classical transitive closure of the call graph with partial evaluation
to collect a large superset of the live code. Section 2.2 presents our results for type analysis of vari-
ables. Section 2.3 presents our technique to predict types inside arrays, as well as its major impact
on garbage collection inside arrays.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592

DOI: 10.1002/spe

568 B. SONNTAG AND D. COLNET

The second step of our strategy is detailed in Section 3. Its major point is to take advantage
of CWA to get rid of virtual function tables (VFTs), shown in Section 3.1, using branching code
as a replacement. Section 3.2 is dedicated to method customization and presents the choices we
made to avoid code explosion, thanks to the Argument Type Set (ATS) customization of Lisaac.
The measurements we present demonstrate the scalability of our approach. Then, our inlining strat-
egy inside dispatch branching code is presented in Section 3.3 along with its two major results: the
perfect translation of 1fTrue:ifFalse: (3.3.1) and the perfect translation of whileTrue:
(3.3.2). The more traditional loop invariant detection is developed in Section 3.4, followed by
reference comparison in Section 3.5. Finally, the branch merging transformation is presented
in Section 3.6.

Section 4 describes the third and final compilation step. The field order is selected in Section 4.1
to reduce the size of objects. The effective global dispatch map is used to select type ids to optimize
switch branching code in Section 4.2. Section 5 is dedicated to benchmarking. The bootstrap of the
SmartEiffel compiler, Section 5.1, highlights the impact of dispatch branching code without type
flow analysis on a large application. Then, in Section 5.2, another large application, the bootstrap
of the Lisaac compiler, is presented this time with type flow analysis. Our experiments focus on
late binding in Section 5.3, cascading message sends on the same receiver in Section 5.4, calls on
the self variable in Section 5.5, and method calls involving multiple inheritance in Section 5.6.
The impact of inlining is studied in Section 5.7. Then, the last benchmark presented in 5.8 is a real
MPEG?2 production decoder. A handwritten C version is compared with a systematic translation into
Lisaac code. Most of the related works are covered throughout the article, and Section 6 ends by
presenting them. A description of our future work is given in Section 7 and Section 8 concludes.

2. FIRST STEP: GATHERING LIVE CODE

The first step in our strategy is essentially a partial evaluation [16, 17] of the program starting from
the entry point. The goal is to gather all the reachable code, even a rough superset of the reach-
able code, from the entire source code necessary to run the application. At the same time, all
expressions are tagged with a set of possible dynamic types to follow method calls by dynamic
dispatch simulation.

2.1. Transitive closure of the call graph

Using the main function code as the starting point, we first develop and analyze the call graph of the
complete source code and then compute the set of all possible dynamic types that can occur at run-
time. Let us take into consideration the simplistic CAR/TRUCK example given in Figure 2 where the
entry point of the graph is the main method. Any unreachable code is simply ignored and thus never
compiled, avoiding the cost of unnecessary compilation. For instance, the no _access method in
Figure 2 is never gathered. The reachable methods are stored and, each time a new possible dynamic
type for the receiver is encountered, customized accordingly.

Genericity as well as multiple inheritance are processed during the first step. Genericity is treated
by code duplication followed by code customization, simply taking into account effective generic
parameters. Thanks to CWA, it is easy to know each possible generic derivation as well as all the
possible dynamic types. Each time a method call site is visited, the lookup mechanism is simulated
according to inheritance rules. For all possible dynamic types of the receiver, the corresponding
method is reached and may be, in case of a new one, customized and collected. Finally, the over-
head of multiple inheritance only impacts compilation time (impact of CWA on multiple inheritance
is detailed in [18]).

Computation of the transitive closure of the call graph requires several passes until it reaches a
fixed point. Each time a pass encounters new code or when a pass adds a new possible dynamic
type for an expression, yet another pass will have to be performed. A fixed point is reached when a
pass adds neither new code nor new dynamic type. This gives us a superset of the reachable code as

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION

Source code

Step 1, Pass 1: Unstable

Step 1, Pass 2: Unstable

- data:VEHICLE;

- print <-

(data.print;);

K_ data::{NULL}

"CAR_print’ X_BIKE_print’)

"CAR_print X BIKE_print)X _'TRUCK_print’)

- main <- K_’main’) K_'main’
(+is_four:BOOLEAN; K_is_four:{FALSE})
(is_four).if { "TRUE_if_else’ XFALSE_if_else’)K_'TRUE_if else’ X _'FALSE_if else’)
}else {
data := BIKE; data::{NULL,CAR BIKE})
h
data := TRUCK; data::{NULL,CAR BIKE,TRUCK})
print;

)i
Step 1, Pass 3. Stable (last pass). Gathered information

Type sets : is_four :: {FALSE, TRUE}
data :: {NULL, CAR, BIKE, TRUCK}
Gathered methods : {main, CAR_print, BIKE_print, TRUCK_print, TRUE_if_else, FALSE_if_else}

Figure 2. Step 1: Gathering live code on the CAR/TRUCK example. The bold typeset indicates new gathered
information, new source code, or some new possible dynamic types for some expressions. Notice that the
default value for reference variables is NULL and FALSE for variable of type boolean.

Number of passes
during step 1

30

23,200 Calculator_GUI lisaac

Hello_World_GUI : .---24,000 Shell
Caloulator i .--+24,400 Tetris
20 14,400 Hanoi)
! Fouronline Viewer Mpeg2

HeII‘ofworId H
10 Parsed lines
: R i of code
7,000 14,000 17,000 22,400 26,000 33,400 58,000

Figure 3. Number of passes before reaching a fixed point for some benchmarks.

well as a superset of the possible dynamic types for each expression. For the example in Figure 2,
there are three passes, and when a fixed point is reached, the set of possible dynamic types for
data is {NULL, CAR, BIKE, TRUCK}. As a consequence of the method call data.print, meth-
ods CAR_print, BIKE print, and TRUCK print are reachable and, consequently, added in
the set of gathered methods. Note that there is no data flow analysis during step 1: data flow analysis
would have removed BIKE and NULL from the set of data. During our first compilation step, the
goal is to gather, as quickly as possible, a rough superset of the live code. Thanks to the data flow
analysis of step 2, BIKE and NULL will then be removed from that set. Still in Figure 2, the dynamic
types for the is_four boolean local variable is { TRUE, FALSE}. As the control flow statements are
defined in the library as in Smalltalk or Self, methods TRUE _if else and FALSE if else are
gathered too, as any other ordinary methods. Our measurements presented in Figure 3 indicate that
during step 1, the number of passes vary in a logarithmic manner as a function of the code size. On
the entire code of our Lisaac compiler, consisting of 53,000 lines of code, we have 29 dependency
passes before reaching a fixed point.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592

DOI: 10.1002/spe

570 B. SONNTAG AND D. COLNET

2.2. Data type analysis for variables

The SmartEiffel compiler carries out its type inference without type flow analysis, using a Rapid
Type Analysis (RTA) algorithm [19]. Type analysis is based on the inheritance hierarchy directly
available in the source code. It gives, for each static type, a superset of all the possible dynamic
types. During step 1, the Lisaac compiler uses the same information to initialize its data; then, to
have a better dynamic type analysis, the Lisaac compiler adds extra type flow information. The list
of possible dynamic types is no longer computed for each static type but distinctively for each vari-
able introduced in the live code, namely instance variables, formal parameters, and local and global
variables. For each variable, the list of assignments to that variable is recorded and internally repre-
sented as a directed graph where variables are the nodes and assignments are the arcs. Possible leaf
vertices of the directed graph are constant values, explicit object identifiers, objects creations, and
the NULL value. A method call is a labeled vertex giving access to the subgraph of this method. The
transitive closure of the directed graph of assignments gives all the possible dynamic types for each
attribute, each formal argument, and each local variable and, consequently, all the possible dynamic
types for each expression. To summarize, during step 1, we are using RTA as a flow-insensitive
interprocedural type analysis for all live methods. Flow-sensitive analysis only occurs during step
2. Both type flow analysis can be related to Control-Flow Analysis (CFA) [20,21].

As for constant values, the NULL value, denoting the absence of object, is a leaf vertex of the
directed graph of assignments. Finally, each expression can be classified into three categories: either
an expression can sometimes be NULL, can never be NULL, or is always NULL. This information is
useful to know if an expression may cause a call on null error. Measurements performed on the com-
plete source code of the Lisaac compiler shown in Figure 4 indicate that 53.5% (i.e. 33.5% + 20%)
of variables are monomorphic variables. All other variables, 46.5% (i.e. 46% + 0.5%), are polymor-
phic. Thus, only 46.5% of variables require dynamic dispatch if they are used as the target of certain
method calls. The accuracy of type analysis is essential in reducing the execution time overhead of
dynamic dispatch. As shown in Section 5.3, most method call sites are usually statically resolved.
From the language design point of view, it is easier to predict types when the language is statically
typed and when the initialization policy of the language does not leave place for uncertainty. For
example, in Lisaac and SmartEiffel, noninitialized data gets a default value. Another good language
design decision is with Java and C#, whereas the programmer must initialize all local variables and
all instance variables have default values, avoiding any uninitialized piece of memory.

2.3. Data type analysis and garbage collection optimization of arrays

To perform global type flow analysis, array read—write operations rely on the built-in
NATIVE_ARRAY [E] abstract data type. The NATIVE_ARRAY [E] abstract data type was first intro-
duced in SmartFEiffel to avoid uninitialized cells and to optimize garbage collection. This abstract
data type is a kind of array list: some capacity is given as an argument of the constructor, and
the filling up is made progressively, cell by cell from left to right (see Figure 5). For type flow anal-
ysis, Lisaac considers the whole used part as a single cell. Actually, we adapted the array smashing
method of [22] for type flow analysis. To summarize, as soon as one cell is possibly assigned with
an object of type A, all cells of the used part are considered as potential holders of objects of type A.

[Polymorphic (total 46.5%)
] Monomorphic (total 53.5%)

(1) Scalar (int, double, char, etc.) | 5,242
(2) Monomorphic, never NULL 3,135
(3) Polymorphic, never NULL 83
(4) Polymorphic, possibly NULL 7,216

Figure 4. Data type analysis for the variables of the Lisaac compiler source code after step 1.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 571

Used area. Uninitialized supply area
_— — pply —
NATIVE ARRAY [OBJ] size capacity
|Q | QlNULLl ol ?? I ?? | ?? | ?? | ?? | ??
0 1 2 3 4 5 6 7 8 9
A
| OBJ_A | | OBJ_B | | OBJ_C |

Figure 5. Arrays are filled progressively from left to right to avoid uninitialized values.

[Polymorphic (total 72.5%)
[Monomorphic (total 27.4%)

(1) Scalar cells 81
(2) Monomorphic non NULL cells 17
(3) Polymorphic, never NULL cells 67
(4) Polymorphic, possibly NULL cells | 189
(5) All NULL cells 3

Figure 6. Distribution of arrays in the Lisaac compiler after step 1. Only 27.4% of arrays are monomorphic.

Although the information collected for NATIVE_ARRAYs lacks index sensitivity, it allows us to con-
clude whether an element can have a NULL value or not. Because NULL is considered as a particular
type, the absence of the dynamic NULL type inside an array is a significant piece of information.
Any method call applied on an element of this array is statically guaranteed to not be NULL; there-
fore, there will be no call on null error. Measurements performed on the Lisaac compiler, shown
in Figure 6, indicate that 27.4% of arrays are monomorphic. This result is not as good as the one
we obtained for variables (Figure 4), but this is not surprising as most arrays are stored in long-life
variables (i.e. attributes or globals), which are accessible from many locations. Still in Figure 6,
arrays containing only NULL values are empty hash maps.

Most garbage collector algorithms [23] need to scan through all the accessible objects, like the
copying collector or the mark-and-sweep garbage collectors. For instance, the mark-and-sweep col-
lector must walk through all accessible arrays during the mark phase. As a result of our filling-up
strategy, the supply memory area of arrays (Figure 5) is unreachable. Our GC (SmartEiffel and
Lisaac) uses this knowledge to avoid scanning of that area. This makes the GC faster and prevents
it from accidentally marking inaccessible objects. Furthermore, the type flow information of the
array elements can be integrated to the GC as it is already the case for the objects’ attributes [24].
SmartEiffel generates a specialized and precise marking function for every object type and excludes
interpretation during execution. We equipped the source code of the SmartEiffel garbage collector
to examine the impact of arrays on memory footprint. To have an indicative execution, we are using
the entire source code of the SmartEiffel compiler itself, which is 180,000 lines of Eiffel source code
during its own bootstrap. The self recompilation of the compiler is a very good benchmark because
it uses many arrays and requires approximately 330 Mb of memory during the process. Further-
more, the garbage collector is triggered 32 times while compiling the compiler. For the following
measurements, only arrays of references are considered, because other arrays, for example arrays
of integers or arrays of characters, are not directly concerned by our type flow analysis technique.
Additionally, the SmartEiffel garbage collector does not even scan the content of arrays of scalars.
We modified the marking procedure for the content of arrays to count the number of marked arrays
during one recompilation. The measurement shows that the GC processes 6,399,198 arrays. The
total size of the corresponding used area scanned is of 12,548,963 cells. As the total capacity of
processed arrays is of 21,714,957 cells and because the supply area is not scanned, the GC avoids
scanning 9,165,994 cells, which signifies a gain of 42% [25].

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

572 B. SONNTAG AND D. COLNET

3. SECOND STEP: OPTIMIZING THE CLOSED WORLD

Because of the results of the previous step, we can begin working in a closed world: the internal rep-
resentation of the source code we are working on is a superset of the reachable code. Each expression
has a finite set of possible dynamic types including the information regarding the NULL value. At
this time, the gathered information is pessimistic, and the goal of the second step is to refine it.
During the second compilation step, we carry out a number of optimizations, among which we will
mention: those who have an important impact on the runtime and those related to object-oriented
languages. Special treatment of operating system dedicated features that are specific to Lisaac is
beyond the scope of this article. Only general purpose optimizations are described here.

3.1. Dispatch branching code and general survey of step 2

Needless to say that the implementation of late binding is crucial for the performance of object-
oriented languages. The most popular implementation relying on a VFT [26,27] is often used for
languages such as Java, C#, or C++. Figure 7 (a) illustrates the necessary indirect function call
of the VFT implementation. Each value of the table is a function pointer leading to indirect calls.
Figure 7 (b) illustrates the dispatch branching code previously introduced in SmartEiffel [3]. This
implementation, which is only possible under CWA, allows inlining or transforming of static calls
inside each case branch. As we obtained exceptional results with the SmartEiffel compiler, we
decided that for the Lisaac compiler to experiment with a similar strategy, using more inlining
and code customization, and to add data flow information. Internally, the abstract representation of
dynamic dispatch is a switch-like representation similar to the one presented in Figure 7 (b) . The
most significant reason for this choice is the possibility to perform inlining inside case branches.
As the same type of internal switch statement is also used for any written switch statement of the
users source code, the type flow analysis is performed indifferently. The type set information for
each expression gathered during step 1 is used to build the dispatch branching code. This internal
representation of the code constitutes the initial state of step 2. Step 2 is composed of passes on the
entire code, to inline or to transform the code, also using data flow analysis, making as many passes
as necessary to reach a fixed point. A fixed point is reached when a complete traversal of the code
is performed without any transformation.

The most common code transformation occurs inside the case branches of the dispatch branch-
ing code. Indeed, in such a case branch, the receiver’s dynamic type is resolved, and the cor-
responding static call is a candidate for inlining or transforming. Simple data flow techniques also
allow code simplification as shown in Figure 8, with the previously used CAR/TRUCK example. Now
that we have given an overview of step 2, the next subsection presents the method customization
issue before a detailed presentation of the inlining strategy (Section 3.3), loop invariant detection
(Section 3.4), reference comparisons (Section 3.5), and dispatch branch merging (Section 3.6). All
the transformations performed during step 2 allow us to better specialize the code and, when possi-
ble, to reduce the dynamic type sets. For instance, the dynamic type set of data in Figure 8 shrinks
progressively during the passes of step 2. Whereas the type sets are only growing during passes of
step 1, the opposite happens during passes of step 2; the type sets become smaller and smaller.

(a) Virtual Function Table (b) Dispatch Branching Code

with type analysis

switch (receiver->id)
@ N\~ T1_method(receiver) case T1: T1_method(receiver)
5 @ A\~ T2_method(receiver) case T2: T2_method(receiver)
§—> @ N\~ T3_method(receiver) case T3: T3_method(receiver)
£ @ N\~ T4_method(receiver) case T4: T4_method(receiver)

f Indirect calls static calls
method

Figure 7. Virtual function table versus dispatch branching code with type analysis.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 573

Status after step 1 Step 2 transformations

- data:VEHICLE; print() prlnt()
TRUCK { .
- print <- CAR BIKE switch (data) swnch (data)
(NULL _/ case NULL. crash; case NULL: crash;

data.print; ————— | case CAR: CAR_print(data); case CAR: CAR_print(data);

% & 2 BIKE: BIKE_print(data); case TRUCK: TRUCK_print(data);
> (9 case TRUCK: TRUCK _print(data);)
- main <- &"Qo b@ } &

(+ is_four:BOOLEAN; é&,‘&t main()

is_four := 4 > 2; O & main() 00(\ O {
(is_four).if { — || { e s fowr=TRUE ’
data := CAR; [isfour=4>2; switch (is_four)
}else { switch (is_four) case TRUE: data = CAR;
data := BIKE; case TRUE: data = CAR; print();
% case FALSE: data = BIKE; data = TRUCK:
print; print(); print();
data := TRUCK; data = TRUCK; }
print; print();
) !
Status before step 3 main()
{
mam() data = CAR;
main() | | switch (data)
{ / b”’ o \data —CAR; case NULL: crash;
CAR_print(CAR); P CAR_print(data); < case CAR: CAR_print(data);
TRUCK_print(TRUCK); data = TRUCK; data flow case TRUCK: TRUCK_print(data);

} TRUCK_print(data); < data = TRUC
} _\ switch (data)
case NULL: crash;
\ case CAR: CAR_print(data);
case TRUCK: TRUCK _print(data);
}

Figure 8. The CAR/TRUCK example during step 2 (constant folding, inlining and data flow).

3.2. Method customization

Method customization consist in the definition of a new version of a method, adapted to the charac-
teristics of the calling site. Thereafter, the customized method is only used for calls with the same
characteristics as the original calling site. Methods are customized in a way that impacts the size of
the generated code as well as the level of specialization of that code. The more the code is special-
ized, the more it can be transformed efficiently. On the other hand, too much specialization makes
the code so large that one cannot expect to translate very large applications. Let us first review the
SmartEiffel strategy.

3.2.1. Customization according to the receiver only (SmartEiffel). Customization according to the
type of the receiver only consists in the definition of one customized method for each possible
dynamic type of the receiver [3, 19, 28]. No possible variation of the arguments type intervenes.
Hence, for one given method that can be called polymorphically, the number of actually defined cus-
tomized methods is equal to the number of possible dynamic types for the receiver. The body of each
customized method is specialized for only one dynamic type, making each call on the self variable
direct static calls. Inside the body, when the method called is small enough, it can be inlined or, in
the best case, statically computed. A typical example is the static computation of a boolean expres-
sion, which makes one branch of an if_then_else statement unreachable. This results in additional
dead code elimination and may impact call sites outside of that method body. In such a case, a new
traversal of the entire code is performed to take into account possible simplifications: receiver type-
set reduction or extra inlinings. For that reason, the specialization of method bodies is performed
as early as possible, not only during final code generation. As shown in the example of Figure 9,
two different methods are created using the inheritance tree. One version of m is called when the
dynamic type of the receiver is A and the other when the dynamic type of the receiver is B. Each
version of m can be called with all possible types for the argument (i.e. the static ARGUMENT
type). The SmartEiffel strategy, although perfectly scalable, lacks specialization on arguments to
take advantage of the gathered information.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

574

B. SONNTAG AND D. COLNET

|recEIVER| | ArRGUMENT |

& A

{A}.m({C,D})
{B}.m({C,D})
{A,By.m({C.D})

Effective calls of method m in the live code (5 call sites):
{A}.m({E})
{B}m({D})

Needed Informations

Receiver only customiza-
tion of SmartEiffel; section
3.2.1; there are 2 versions
for method m:

Cartesian Product Algorithm
for Self; section 38.2.2; there
are 6 versions for method m:

Argument Type Sets cus-
tomization of Lisaac; sec-
tion 8.2.3; there are 4 ver-
sions for method m:

{A}.m({ARGUMENTY) | {A}.m({C}) {B}.m({C}) | {A}.m({C.D})
{BYm({ARGUMENTY}) | {AY.m({D}) {B}m({D}) | {A}.m({E})
{Atm({E}) {B}m({E}) || {B}.m({C,D})

{B} m({D})

Figure 9. Example to compare the customization of some method m with one argument.

3.2.2. Customization with Cartesian Product Algorithm (Self/Agesen). The Cartesian Product
Algorithm (CPA) for the Self language [7, 29] customizes methods for all possible types of the
receiver, but also for all possible types of the arguments. This results in a better specialization of
method bodies because calls on formal parameters are also specialized. Unfortunately, more cus-
tomized methods need to be developed. Invocation of methods is also made more difficult because
the dynamic types of arguments are involved in the dispatch mechanism together with the dynamic
type of the receiver. As shown in Figure 9, the receiver type set is {4, B}, and the set of the possible
argument types is {C, D, E}. Therefore, there are 2 x 3 versions of method m that are created. With
CPA, each customized method is highly specialized. Before calling a method, one must dispatch not
only with the type of target but also with the types of arguments. The CPA strategy is a flexible and
dynamic approach designed under the OWA. The main drawback of this approach is that it creates
too many customizations. In the example given in Figure 9, the method customization {B}.m({E})
is not necessary under CWA.

3.2.3. Argument Type Set customization (Lisaac). Argument Type Set customization of Lisaac is
a trade-off between receiver only customization of SmartEiffel (3.2.1) and generalized CPA cus-
tomization of Self (3.2.2). For a given call site, ATS uses the type set of the receiver as well as the
type set of each effective argument. The number of customized methods that are possibly called
matches the number of possible types of the target at that call site. All customized methods of that
call site have the same signature for arguments. Actually, each argument is tagged with the possible
type set for that argument at that call site. By doing so, only the dynamic type of the receiver is
involved in the dispatch mechanism. The type information gathered for arguments at a given call
site is enclosed in the bodies of the corresponding customized methods. A pool of customized meth-
ods is updated throughout the compilation process. As soon as a simplification occurs to a method
body, a complete traversal of the code is necessary to take into account possible modifications in
other methods. A customized method is shared by two call sites only if the type sets for all effective
arguments are identical.

3.3. Transformation inside dynamic branching code

By its very nature, VFT usage implies making indirect calls to true functions, even for a simple field
access. To permit inlining of simple operations, we are obliged to use either an if_then_else balance
tree or a switch statement. For polymorphic calls with only two possibilities, Lisaac uses a simple
if _then_else (see 3.3.1). When there are more possibilities, Lisaac generates a switch statement to
allow a constant time selection (see 4.2).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592

DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 575

A block closure is an anonymous function or an anonymous procedure that is saved along with the
current bindings from enclosing blocks for later invocation. When it cannot be statically resolved, a
block closure is typically implemented by saving both the function and any activation records that
contain variables referenced by the function. The closure creates additional implicit references to
the bindings closed over and hence must be accounted for in any memory management scheme (i.e.
closures are as costly as true objects). The closure itself is an object that must be managed and may
have either a dynamic extent or an indefinite extent depending on whether it is only used by inner
blocks of the creating block or passed out of the creating block. Because dynamic closure manage-
ment is very costly both in terms of memory and execution time for calling the delayed code [30],
we have designed our inlining strategy to maximize static resolution of block closures.

Our inlining algorithm features six possibilities according to the encountered call:

Case #1: The call is a tail-recursive call. In such a situation, the call is favorably replaced with a
goto statement at the beginning of the enclosing method. By doing so, the enclosing
function is no longer recursive and is thus a possible candidate for subsequent situa-
tions. Note that it is not possible, in the general case, to remove tail recursion when
using VFTs.

Case #2: The called method is recursive. The static call to the corresponding method is left
unchanged. The rationale is that the stack is convenient to implement the recursion.
Although inlining may be possible under unusual conditions, we prefer to not inline
here. When a lexical closure is part of the call, we have to manage runtime struc-
tures to capture the context. Usually, this situation is quite rare, and the catch is more
commonly reduced to the current receiver.

Case #3: A lexical closure is used in receiver and/or some arguments. A lexical closure may
for example use a local variable of the enclosing context. Inlining makes available
the usage of that closure into the current context. Applying transitive transformations
without encountering the previous case #2 allows a static implementation of closures.

Case #4: The method call is unique. Thanks to CWA, case #4 is straightforward and avoids the
unnecessary function definition with the unique associated method call.

Case #5: The method called is small enough. A compiler option provides the ability to select the
right balance between either performance or binary code size. The default value is the
result of the experimentation presented in Section 5.7.

Case #6: All other cases. In all other situations, the call is a direct static call to the function.

3.3.1. Transformation of the if then_else conditional. As in Smalltalk or Self, the Lisaac
if_then_else statement is defined in the library, not in the actual language. In the BOOLEAN class,
this conditional statement is actually an abstract method consisting of two arguments, both of clo-
sure type. The first argument represents the then part and the second argument the else part. There
are two definitions of this method, one in the TRUE class and the other in the FALSE class. The
definition of the TRUE class only executes the then closure, whereas the definition of the FALSE
class only executes the else closure. For efficiency reasons, Smalltalk and Self compilers use a
special treatment with hard-coded primitives to handle similar if_then_else conditional statements.
As a result of our compilation strategy without VFTs and the transformation rules we selected, it
is not necessary to handle conditional statements of this type with a special case inside the com-
piler. We are thus able to obtain the best possible translation without using any compiler tricks,
by simply applying our general compilation scheme. Figure 10 details all steps of the compilation
process for an if_then_else statement. Dynamic dispatch on the boolean value is first translated
with a two branch switch, one for TRUE and the other one for FALSE. The last step replaces
the switch with a hard-coded if statement. As a result, the generated code is as efficient as
handwritten C code. Notice that the transformation of a two branch switch into a simple condi-
tional statement occurs, generally not only for booleans but for all two element type sets dispatch
call sites.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

576

Lisaac code

B. SONNTAG AND D. COLNET

true_block closure

false_block closure

Example |»

r 1 r 1
test .if { "Yes".print; } else { "No"print; };

4{ "if else" function in TRUE library }—

- self.if true_block else false_block <-

)i

true_block.value; // Evaluation closure

4{ "if else" function in FALSE library |»

- self.if true_block else false_block <-

false_block.value; // Evaluation closure

)i

Step 1

Type prediction l—

true_block::{CLOSURE_1}
false_block::{CLOSURE_2}

—

1

test::{TRUE,FALSE}
e

—

switch (test) {

case TRUE :
TRUE_if_else(test,closure_1,closure_2);
break;

case FALSE :
FALSE_if_else(test,closure_1,closure_2);
break;

%

Step 2
Inlining #1 (Case #3) |» Inlining #2 (Case #3) |»
switch (test) { switch (test) {
case TRUE : case TRUE :
CLOSURE_1_value(closure_1); STRING_print("Yes");
break; _[eXpass , preak;
case FALSE : case FALSE :
CLOSURE_2_value(closure_2); STRING_print("No");
break; break;
I 5
Step 3

Back to efficient
C code

if (test==TRUE) {

STRING_print("Yes");

}else{

%

STRING_print("No");

1 Two branches switch simplification |»

Figure 10. Steps to compile the library-defined if_then_else conditional into the best possible C code.

3.3.2. Transformation of the while_do loop. As for conditional statements, all loop statements are
defined in the library and are not part of the actual language. Once more, applying our general com-
pilation strategy allows us to obtain the best translation, even for loop statements. As an example,
Figure 11 details of the steps necessary to translate the while_do statement. During the cascade of
transformations, applying case #1, for the tail-recursive call, leads to the goto loop. The apparent
final step reaches the corresponding while statement. Again, the translation to handwritten C code

is reached.

3.4. Loop invariant detection

Loop invariant detection is better achieved when the body of the loop is fully defined as it is the case

under CWA. For example, let us consider the following C++ like piece of code:

STRING string;
void method () {
int j;

this->string = new STRING() ;

this->string->length = 5;
this->string->storage = "Hello";

j = 0;

while (j < this->string->length) {

io->put char(this->string->storagelj]);

J o+

i

Copyright © 2012 John Wiley & Sons, Ltd.

// Declaration of the string attribute

Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION

577

In the previous code, string is the attribute of the this object. In a C++ like language, the
put_ char () method can have access to the this pointer and thus is able to modify the length

and/or the storage attribute. Under CWA, the com

piler is aware of the put char () method

invoked on the io object. If put char () does not modify the attributes of string, the pre-

vious method code can be optimized as follows, us
extraction:

void method ()
int j;
this->string

{

new STRING() ;

this->string->length = 5;
this->string->storage = "Hello";
j = 0;
{ char xtmp=this->string-s>storage;
while (j < 5)

io->put_char (tmp[j]);

Jo++;
}

Lisaac code
BQmMeF
self body

r 1 r 1
{i<10} .while_do {j:=j+1; };

—| "while_do" function in BLOCK library

ing constant propagation and loop invariant

- self.while_do body <-

(self.value).if {
body.value;
while_do body;
I3
);

Step 1

Type prediction |»
self:{CLOSURE_1}
body::{CLOSURE_2}

BLOCK_while_do({j<10}, {j :=j + 1))

Branching code |—

Step 2

After ’if ’ resolution }—

BLOCK_while_do(self,body)
{ tmp := BLOCK_value(self);
switch (tmp) {
case TRUE:
BLOCK _value(body);
BLOCK_while_do(Self,body);
break;
case FALSE:
break;

I3

label:

tmp :=j < 10;

switch (tmp) {

case TRUE:
j=j+ 1
goto label;
break;

case FALSE:

break;

k

tail
recursion

Inlining x 2 (case #3) }—

—{ Tail-recursion (Case #1) }—

4{ Two branches switch simplification

label:
tmp := BLOCK _value(self);
switch (tmp) {
case TRUE:
BLOCK _value(body);
goto label;
break;
case FALSE:
break;

k

abel:

if j<10){
j=i+1
goto label;

b

Step 3

while (j<10) {
j=i+ 1

Back to efficient
C code

| Detected ‘while’ pattern |»

Figure 11. Steps to compile the library-defined whil

Copyright © 2012 John Wiley & Sons, Ltd.

e_do loop into the best possible C code.

Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

578 B. SONNTAG AND D. COLNET

Then, the five steps loop can be traditionally unrolled into the following:

void method () {
this->string = new STRING() ;
this->string->length = 5;
this->string->storage = "Hello";
io->put char ('H’)
io->put char (’
io->put_char (’
io->put_ char (’
io->put char (’

’

)
")
")
")

e
1
1
o

3.5. Optimization of reference comparisons

Method customization obviously implies more code as it creates new specialized code. For instance,
within any method, the receiver (i.e. self or this) cannot be NULL and has exactly one deter-
mined dynamic type. When a polymorphic method call site is broken up with the corresponding
dispatch branching code, the non-NULL target expression also gets one unique possible dynamic
type within each case branch of the switch. Remarkably, we observed that many reference com-
parisons became constant, that is, either always true or always false, leading to code removal or
at least to code reduction. Indeed, it is not common for a programmer to consciously write an ==
expression (or a ! = expression), which is always true or always false. It is quite common, in object-
oriented software, to write a template method pattern [31] with a comparison expression, which
becomes statically computable in some subclasses. As each expression is tagged with the set of all
the possible dynamic types, the NULL value being a possible element of the set, rules to decide
when a comparison expression is constant or not constant are as follows. In this instance, we will
take into consideration a comparison of the form a ==b or a ! =b where S, and Sj are the corre-
sponding type sets. When S, = S = {NULL}, the comparison expression is constant, thus a == Db
always yields true and a ! = b always yields false. The second situation making a comparison con-
stant occurs when S, N S, = @. The intersection of S, and S} being the empty set, a == b always
yields false and a ! =D always yields true. Under all other circumstances, the comparison cannot
be statically determined. Measurements on the Lisaac compiler are presented in Figure 12. During
the parsing of the whole source code of the Lisaac compiler, 7418 comparisons are encountered,
but only 2645 of those written comparisons are reachable. The latter, as a result of inheritance and
code customization, are then transformed into 9215 comparisons. Still in Figure 12, the comparison
categories from (1) to (5) disappear. Category (1) represents comparisons of integer constants
or character constants. Categories (4) and (5) are the direct consequence of type flow analysis as
previously explained. Category (3) is for similar access to the same data, the same variable, or the
same field access on both sides of the comparison operator. As most comparisons are involved in
if_then_else statements, detecting a constant comparison makes it possible to remove either the then
block or the else block. This type of code removal contributes to offset the code size explosion due
to method customization. The comparisons of category (2) in Figure 12 are part of the removed
dead code. As a result, 49.2% of comparisons disappear, and only 50.8%, category (6), are part of
the executable.

3.6. Branch merging

Invariant reference detection is used to merge sequential switch dispatchs when two or more
sequential method call sites apply to the same unchanged receiver expression. When the
dynamic type of the receiver cannot change, it is possible to merge the dispatching code itself to
avoid having multiple dynamic type selections. An example of this would be as follows:

receiver.method 1;
receiver.method 2;

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 579

written] | (4)&(5)
in the 81+396
source 5.2%
code
(3)
13
0.14%
=
m}% (1) a and b are constant 2,668
¢ (2) Dead code 1,376
o 2 (9) o0 = oo 1
In the 54 (4) Sa = Sy = {NULL} 81
live - (5) SanNSy, =10 396
code Qﬁ g (6) Generated — Non static 4,681
o Total number of comparisons | 9,215

Figure 12. Static evaluationof a==bora !=b.

72.87% S 11.7%
(9714 switch) s (1284)

1 switch for 1 call

gain

1 switch for 1 call

11%

1 switch for 3 calls
0 9714 10914

1 switch for 4 calls

Figure 13. Branch merging distribution during bootstrap of Lisaac.

If the local type analysis for receiver predicts a dynamic family type set {4, B}, the following
branching code on the left is merged into a single switch:

switch (receiver->id) {

case A: e switch (receiver->id) {
A method 1 (receiver); break; merging case A:
case B: A method 1 (receiver) ;
B _method 1 (receiver); break; A method 2 (receiver) ;
}i break ;
case B:
switch (receiver->id) { B method 1 (receiver) ;
case A: B method 2 (receiver);
A method 2 (receiver); break; break;
case B: }i

B method 2 (receiver); break;
}i
Actually, this merging optimization renders Smalltalk’s cascading method calls notation automatic.
This type of multiple method calls on the same target is quite frequent with object-oriented pro-
gramming. Measurements taken on the Lisaac compiler indicates that 11% of polymorphic method
calls are averted (see details of distribution in Figure 13).

4. THIRD STEP: BACK-END OPTIMIZATIONS

The final step of our compilation strategy is dedicated to back-end optimizations. To simplify this
presentation, the target language is represented by the C language.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

580 B. SONNTAG AND D. COLNET

chara short ¢
4 4
long b
8 8
long d
12 12 T T T
long d
16 T T T 0 7 15 23 31
0 7 15 23 31
Fields as they are in the source Rearranged fields in the generated code

Figure 14. Rearranging a data structure can avoid many memory fragmentation.

4.1. Rearranging data

As compiler writers, we are undeniably involved in language design. A decision made during the
design of the language may have drastic effects at compile time. Allowing the compiler to change
the order of the fields within a structure or an object makes several optimizations possible. In con-
trast, such a decision is a constraint for programmers. A suitable balance between compiler writer
constraints and language designer requests must be attained. As with SmartEiffel and Lisaac, the
programmer cannot rely on field order to write his code. As the attributes of objects can be shifted
or even removed by the compiler, it is not permitted to have a pointer pointing towards the interior
of a structure. Structures or objects must always be pointed to globally. Consequently, the compiler
is able to rearrange the fields of a structure to fit within the memory layout and minimize mem-
ory fragmentation. The same type of data reorganization can also be applied on local variables to
save stack space. The example in Figure 14 presents a structure with four fields named a, b, ¢, and
d. When the order of the original source code is kept unchanged the total memory size needed is
16 bytes with 5 bytes of unused memory padding. When reorganized as shown on the right side of
Figure 14, the total size for entire structure is 12 bytes with only 1 byte of unused memory padding.
While keeping the alignment, the rearranged structures are noticeably shorter and may fit better into
a processor’s cache. In a reduced data structure, the maximum number of lost bytes is equal to the
size of a processor-word - I and the lost bytes do not depend on the number of fields. For instance,
on a 32-bit processor (4 bytes), the maximum loss is 3 bytes no matter what the number and size
of fields are. On a 64-bit processor, the maximum loss of memory is 7 bytes per structure. More
commonly, let 27 be the size in bytes of a machine word (P = 2 for a 32-bit processor). Assuming
the fields are sorted by increasing size into the structure, a memory lost occurs when the size of
fields changes. Changing size from 2/ to the next size 2/ *! implies a maximal loss of 2¢. Changing

sizes from 2/ to 2/, with j > i, induces a loss of Z,’c;: 2. As a consequence, the total loss using
ize 2P is SP1 ok is. 2P —
words of size 27 is) ;o 2%, thatis, 27 — 1.

4.2. Dynamic type id selection and switch optimization

The traditional translation of switch statements into assembly code relies on a jump address table
indexed with the switched value. Let byte count be the number of byte processor’s words; the
pseudo assembly generated code for a switch statement is as follows:

static void xjump table[] = {&id T1,&id T2,&id T3};

(1) index := receiver->id - first case_id
(2) if ((unsigned)index > last case_id) then
(3) goto default case

(4) endif

(5) goto (jump table[index % byte count])

id T1: Tl method(receiver); goto after dispatch;

id T2: T2 method(receiver); goto after dispatch;

id T3: T3 method(receiver); goto after dispatch;
(6) default case:

after dispatch:

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 581

As the switched value is the integer dynamic type id, the compiler is able to select id sets to
optimize the generated assembly code. Because of CWA and global analysis, all the possible switch
sites are known at compile time. The dynamic type sets involved in method calls are naturally seg-
regated into different families of objects. As an example, an application using fruit and vehicles
probably will not combine those objects. As a consequence, some method calls are dispatching only
fruit, whereas other method calls are dispatching only vehicles. No method call handles fruit and
vehicles at the same time. It is thus possible to reuse the same ids in the fruit object family and in
the vehicles object family. The id only needs to identify the object inside its family, not globally.
Our numbering strategy is similar to selector coloring [8,32] and is the inverse of selector table
indexing [33,34]. Because of the switch implementation, the goal of the type id numbering is first
to minimize the jump table size and second to try to use values as small as possible, the best being
to start at 0. When the smallest number of a family is close enough to zero, it is possible to remove
the subtraction instruction (7) of the switch assembly code. The used heuristic gives the priority
to the largest families, which are then sorted according to frequency of written method calls. When
a family is completely separated from other families (i.e. when all the types of a family are never
used in other families), the numbering can start at 0. If one same type is used in several families,
its id is selected to be unique across families and minimized as much as possible. While we are
implementing dynamic dispatch, all cases are associated with one dynamic type and nothing else
can happen. It is not possible to go out of range of the jump table. The default case is thus
useless and removed (the lines (2), (3), (4), and (6) are removed).

4.3. Dynamic type id selection on the compiler example

Measurements on the Lisaac compiler indicate that 315 types of objects may exist at runtime.
Amongst those 315 possible dynamic types, only 120 are involved in dynamic dispatch or subtype
testing (on subtype testing, see [35,36]). Dynamic types that are not involved in dynamic dispatch
or subtype testing are not numbered, and corresponding objects do not have the id field (object size
reduced). On the compiler example, nonidentified types represent 62% of dynamic types. We have
also remarked that most applications have a similar important ratio of types that are not involved in
dynamic dispatch. Numbering of the 120 dynamic types involved in dynamic dispatch is presented
in Figure 15. The upper section of the figure indicates that id O is used for 13 different types, that
id 1 is used for 12 different types, and so on. The lower section of Figure 15 gives the distribution
of dispatch call sites. There are 10,664 dispatched call sites or subtype tests. Each horizontal line
represents a family of call sites, and a continuous line indicates that there is no break in the dispatch
sequence. The largest family of call sites has 8044 members that represent 75.43% of call sites,
and this family operates in the range [0—1] of ids. Most of them are if_then_else dispatch call sites
(see 3.3.1). As one can discern, the result is remarkable, and there are few breaks in sequences. Also
note that 46 call sites (0.43%) operate on the complete ids distribution.

5. EXPERIMENTS

Our compilation strategy is a combination of several ideas and techniques. Optimizations performed
in a given pass may interact with other optimizations in the same or other passes [37]. As one opti-
mization may expose opportunities for another optimization, measuring the impact of a single aspect
of the compilation process is very difficult. For example, it is not that simple to disable type flow
analysis on collections to measure the sole impact of that aspect.

5.1. Bootstrap of the SmartEiffel compiler

The bootstrap of the SmartEiffel compiler (detailed results published in [13]) is summarized in
Figure 16. Each step compiles the same 50,000 lines of Eiffel source code. The first compiler
on the left-hand side is the Eiffel/S 1.3 commercial compiler, which works under the open world
assumption with a VFT implementation of the dynamic dispatch. The far-left compilation step is
running the algorithms and data structures of Eiffel/S. The remaining compilation steps are running
the algorithms and data structures of SmartEiffel. The binary code of SmartEiffel#0 is using the

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

582 B. SONNTAG AND D. COLNET

//indicates that 13 dynamic types share the 0 id

13

75.43% ——

11.43% —

4.55% —_— —

2.28%

0.86%

0.79% ———

0.74% - - -
0.73% — -

0.60% ——

0.50%

0.43%

0.295 ——— — \

0.07% — - - continuous line indicate that
0.06 ——— — there is no hole in this huge
0.065 — — dispatch of 55 case branches
0.06% I —

0.06% _

0.05%

0.02% —— —

0.02% — ——

0.02% - - —_— -

Figure 15. Numbering of dynamic types involved in dynamic dispatch on the Lisaac compiler example.

Eiffel S
compiler

35s

Figure 16. The bootstrap of SmartEiffel indicates a speed factor gain of 1.6 (56s/35s = 1.6).

VFTs that are coming from the Eiffel/S translation. SmartEiffel#0 is also using the Eiffel/S run-
time libraries for memory allocation as well as the Eiffel/S objects layout. The compilation step
from SmartEiffel#0 to the first stabilized SmartEiffel compiler, the step where the fixed point is
reached, is the best place to perform the comparison. Because SmartEiffel does not perform type
flow analysis, the 1.6 speed gain factor of Figure 16 is the gain obtained with RTA [19] and dynamic
branching code [3, 13].

5.2. Bootstrap of the Lisaac compiler

The previous versions of the Lisaac compiler were written in SmartEiffel. To bootstrap, we trans-
lated the source code of the compiler into Lisaac code. The Lisaac compiler is a considerably large
application of approximately 53,000 lines of Lisaac source code. We compare in Figure 17 the latest
version of the Lisaac compiler written in SmartEiffel (LisaacS) with the first bootstrapped version
of the Lisaac compiler (Lisaac’!). Because the translation was systematically performed, the com-
parison applies on the same algorithms with similar structures. The LisaacS® binary is produced by
the SmartEiffel compiler, which does not feature type flow analysis whereas LisaacS® does. As a
result, the number of monomorphic method calls has improved from 91% to 98.3%. As shown in
Figure 17, the percentage of extra monomorphic method calls represents polymorphic method calls

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 583

Extra
monomorphic
, SE
Lisaac 3 '|6%

Polymorphic

. LI ,
Lisaac Call sites
T S

Extra
monomorphic
4.7%

. SE . LI . SE . LI
Lisaac Lisaac Lisaac Lisaac
Memory footprint Execution time

Figure 17. Lisaac®F versus Lisaac/. The LisaacSF compiler is the early version of the Lisaac compiler

written in SmartEiffel. The Lisaac/ compiler is the first bootstrapped Lisaac compiler, written in Lisaac and
recompiled with itself. As we applied a systematical translation of the SmartEiffel source code of Lisaac’#
to obtain Lisaac’!, the comparison applies on the same algorithms.

PARENT time Unpredictable .
method < 40 - (seconds) , SmartEiffel
abstract; ,/
e
30
C++ S~ -/
inherit
20 -
CHILD_1 CHILD_2 CHILD_3 CHILD_N Lisaac
method <- | [method <- | [method <- |e ¢ ¢« | method <- 10 —
"1".print; "2".print; "3".print; "n".print; 2 8 32 128 512
time Predictable
20 - (seconds)
Unpredictable MAIN Predictable MAIN | L eemeemem—aaa C++
main <- main <- - - " " " "/~ E_martEiffeI
1_000_000_000.times { 1_000_000_000.times { 10 4 Isaac
array.item(random).method; array.item(random & 1).method; _
b b 2 8 32 128 512

Figure 18. Horizontal inheritance benchmark where N is the number of objects, from 2 to 512.

leading to the same code for each branch of the dispatching code. Such polymorphic method calls
are replaced with direct static calls and accordingly considered as monomorphic call sites. Most of
the extra monomorphic call sites are read/write operations of a field within a structure with the same
displacement properties (details in [3]). The memory footprint gain, which is of 32.8% in Figure 17,
is mostly due to the data structure compaction algorithm we had presented in Section 4.1. The run-

time gain of 12.6% derives from better type analysis. Owing to this criteria, the Lisaac! compiler
is more effective than the LisaacS compiler.
Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592

DOI: 10.1002/spe

584 B. SONNTAG AND D. COLNET

5.3. Late binding benchmarks, horizontal and vertical inheritance

Benchmarking only late binding appears to be quite difficult because of the involvement of several
factors, such as the level of polymorphism, dynamic predictability of the target, or even the depth of
the inheritance graph. Furthermore, most processor architectures are now using some sort of branch
history table mechanism, which allows numerous conditional branches to be predicted when the
same type of target is used repeatedly. Indeed, it is a well-known property of polymorphism that
generally the receiver type at a polymorphic call site does not vary substantially [38]. Branch his-
tory table is thus used as a memory of the last receiver type, which may be considered as a type of
inline caching performed by the processor (inline caching is an optimization technique that was first
developed for Smalltalk [39,40]).

The horizontal benchmark in Figure 18 is dedicated to late binding. Actually, this benchmark is
not a single program but a set of programs depending on N, the number of subclasses stemming
from the PARENT class. For instance, when N is 128, the PARENT class has 128 different subclasses
with 128 different methods, and all of the 128 objects are mixed together into an array of 128 slots.
Because N varies from 2 to 512, all types of polymorphism are considered. Furthermore, there are
two different main programs, both having one polymorphic dispatch site embedded in a long-time
loop. The Unpredictable main randomly shuffles the receiver amongst the N possibilities, making
the dispatch method call truly unpredictable. Conversely, the Predictable main does not shuffle the
receiver as much. Only two types of receivers are used repeatedly, making the predictable bench-
mark more reliable [41]. To have a meaningful comparison, the C++ code always uses the virtual
keyword for all methods. There are only virfual methods both in SmartEiffel and Lisaac. Runtime
results make it clear that the dispatch branching code is scalable in comparison with the VFT results
of C++. In comparison with SmartEiffel, Lisaac is superior because the dispatch branching code
itself is inlined. For an unpredictable situation, only C++ is time constant even when N becomes
voluminous. With over 512 types to dispatch, even Lisaac is outperformed by C++; however, such
a megamorphic call is clearly unrealistic (for megamorphic call sites, see [41-43]). Note that we
have not mentioned the results of Java here because each Java virtual machine we have tried was
outperformed. The performance time was between 30 and 50 times slower than C++ (in [44], they
report a 10-100 factor compared with C).

The vertical inheritance benchmark of Figure 19 also uses an N variable number of classes vary-
ing from 2 to 512 and, as in the previous benchmark, two different main programs, one unpredictable
and one predictable. In the vertical benchmark, one unique method defined in the PARENT class is
vertically inherited by all of the NV subclasses. The C++ source code uses the virtual keyword.
That is not that important, but the gcc compiler we used, gcc 4.4 .1, was unable to compile
more than 128 classes because of an internal limitation of the compiler for inheritance depth. The
inadequate results of SmartFEiffel in the unpredictable situation of Figure 19 is because the unique
inherited method from PARENT is actually duplicated in each CHILD offshoot. SmartEiffel generates
the dispatch branching code for the call. Lisaac is able to detect that the inherited method is always
identical. All the dispatch branching code is thus avoided and the method is inlined. As in the
horizontal benchmark, the C++ compiler generates a VFT for the call. The gains come only from
the processor caching mechanisms.

5.4. Automatic cascading method calls

In Figure 20, the array accessed inside the loop contains 512 different instances of 512 different
classes. The dispatch branching code is taken into account for each method call being performed on
the same receiver; hence, it is unique (Section 3.6). Because of the VFTs, the C++ compiler is
unable to efficiently take into account the dispatching code.

5.5. Call on the self (or the this) variable

The purpose of the benchmark of Figure 21 is to measure the benefits obtained for method calls on
the self (or the this) variable. In this family of programs, the number of method calls on self
increases with N. Following the number of method calls on self, the number of defined subclasses

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 585

time Unpredictable
PARENT 40 (seconds) , SmartEiffel
method <- "Hi" print; /
. . . / ’
inherit 30 - Ve
ekl ;’A """"" C+
Lisaac
10 A
2 8 32 128 512
CHILD_N
time Predictable
20 | (seconds) c
Unpredictable MAIN Predictable MAIN | T L Leee-eall X th SmartEiffel
main <- main <- il Lisaac
1_000_000_000.times { 1_000_000_000.times { 10
array.item(random).method; array.item(random & 1).method;
b b 2 8 32 128 512

Figure 19. Vertical inheritance benchmark where N is the number of objects, from 2 to 512.

runtime
Automatic cascading-calls detection. (seconds) 150 -
135 - "
120 1 e
MAIN 105 4
main <- ,»"
500_000_000.times { 901
receiver := array.item(random); 754 ‘/'
receiver.method1; - Lisaac
receiver.method2; \ Same receiver 60
receiver.method3; i forall calls. 45 -
+ Dispatching code .
' s factorized. 301, cascading
receiver.methodN; . 15 1 factor
¥ -_—

1 2 3 4 5 6 7 8 9 10 N

Figure 20. Branch merging of Lisaac compared with C++. The slope variation highlights the gain.

increase to redefine inherited methods: CHILD_1 redefines only m1, CHILD_2 redefines only m2,
CHILD_3 redefines only m3, and so on. The unpredictable main randomly shuffles the receiver
among the N possibilities. As a result of the receiver customization technique previously presented
in Section 3.2.1, both SmartEiffel and Lisaac have excellent results compared with C++. Actually,
the execution time of C++ is so slow that we had to use a logarithmic scale. When N equals 256,
Lisaac’s runtime is 80 times shorter than the one for C++. Evidently, C++ treats method calls on
the this receiver the same as for ordinary method calls, starting the dispatch process, again and
again, from scratch.

5.6. Multiple inheritance

The purpose of the benchmark of Figure 22 is to measure the dynamic dispatch when multiple
inheritance is involved. In this family of programs, the number of multiple inheritance links is
increasing with N: GRANDCHILD_1 has 1 parent, GRANDCHILD_2 has 2 parents, GRANDCHILD_3
has 3 parents, and ... GRANDCHILD_N has N parents. The main loop randomly picks up a GRAND-
CHILD; from an array to launch the inherited method from PARENT. The C++ source code uses
the virtual keyword both for inheritance and methods. For runtime results, even if SmartEiffel
performs better (see upper-left curve of Figure 22), results of C++ are not completely unsatisfactory.
We detected something never encountered in any previous benchmarks: the executable size of C++
grows dramatically with the value of N. To investigate this point, we measured the data, and the text
segment of the generated executables for all values of N (see lower curves of Figure 22). As shown

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

586 B. SONNTAG AND D. COLNET

PARENT = 256 time K
method tmp <- m1 tmp <- > (seconds) S Gt
tmp := self.m1(tmp) |tmp + 1 & K
tmp := self.m2(tmp) § 128 7 N
. m2 tmp <- S K
tmp := self.mN(tmp) | tmp + 2 S 64 o
tmp L 5’ R4
mN tmp <- ~ | ','
tmp + N 82 ',‘
16 1
inherit S
81 S . -
;. P SmartEiffel
CHILD_1 CHILD_2 | |CHILD_3 CHILD_N
m1 tmp <- m2 tmp <- m3tmp <- [eee|mNtmp <- Lisaac
tmp + 1+1 tmp + 2+2 tmp + 3+3 tmp + N+N
MAIN
main <-
200_000_000.times {
tmp := array.item(random).method(tmp);
] . (logarithmic scale)
tmp.print; 0

2 4 8 16 32 64128256512N

Figure 21. Call on self / this inside a template method pattern [31].

in the figure, it appears that the problem of C++ arises in the text segment part of the executable,
clearly indicating that the tables used for the multiple parents are growing larger with the value of
N (this confirms the results mentioned in [45]).

5.7. Impact of the inlining level of small functions

The inlining level of small functions (i.e. case #5 of our inlining strategy described in Section 3.3)
can be selected manually, thanks to a compiler option. Figure 23 shows the impact of the inlining
level on binary code size while compiling the Lisaac compiler itself. After reaching a minimum
inlining level of 10, the curve increases linearly. Because the Lisaac compiler is written in an object-
oriented way and contains numerous methods with several polymorphic method calls, it is quite
likely that several other object-oriented applications will have a similar behavior. Thus, we decided
that 10 is a good trade-off for the inlining level default value.

5.8. The MPEG2 benchmark

To have another significant benchmark, we translated an entire M peg?2 decoder, originally written
in C, into Lisaac. We performed a mechanical translation of the original C code, approximately
10,000 lines of C code. To have a significant runtime, we used an 80 Mb video file as input. Four
versions were created, one for each of the following output formats: YUV, SIF, TGA, and PPM.
Figure 24 shows the runtime of the C code compared with the Lisaac code. The C code generated
by the Lisaac compiler was compiled with the same C compiler and options. As for the YUV con-
version, Lisaac is much slower than C. Amazingly, all the other conversions (SIF, TGA, and PPM)
require to first compute the YUV conversion. The time used for the YUV conversion is indicated on
each conversion to exhibit the remarkable results for the remainder of the computation (Figure 24).

6. RELATED WORK

MLton (http://www.mlton.org/) is an open-source, whole-program, optimizing Standard ML com-
piler. Regardless of the fact that MLton is for the SML functional language (i.e. nonobject oriented),
MLton is very similar to Lisaac: CWA, aggressive dead code elimination, untagged and unboxed
native integers, unboxed native arrays, and so on. Furthermore, MLton is very similar to Lisaac in
the way closures are inlined.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 587

PARENT

dta:INTEGER m1 tmp <-
dta:=dta + 1

method tmp <- tmp + dta

tmp := self.m1(tmp)
tmp := self. m2(tmp) | m2 tmp <-

dta :=dta + 2
tmp := self. mN(tmp) | tmp + dta
tmp N time
mN tmp <- 32 - (seconds)
dta:=dta + N
tmp + dta
inherit
CHILD_1 CHILD_2 CHILD_N
dta1:INTEGER dta2:INTEGER dtaN:INTEGER
m1 tmp <- m2 tmp <- """ |mNtmp <-
dtatl:=dta1 +1 dta2 :=dta2 + 1 dtaN := dtaN + 1
tmp + dta1 tmp + dta2 tmp + dtaN
A T \
GRANDCHILD_1 | [GRANDCHILD_2 | ... [GRANDCHILD_N
MAIN
main <-

1_000_000.times {
tmp := array.item(random).method(tmp);

h
tmp.print;

N
C++ SmartEiffel Lisaac | L C++ Lisaac
_______ b v ~
..... N L o

Tl - SmartEiffel

i, I

\ s |

. I ,

data segment | I 2 . | text segment

|
12864 32 16 8 4 2 1 25612864 32 16 8 4 2 1 0 0 1 2 4 8 1

6 32 64128256 1 2 4 8
—_

Mega-bytes Kilo-bytes Kilo-bytes Mega-bytes

Figure 22. Multiple inheritance benchmark where N is the number of multiple inheritance links.

Work presented in [46] introduce the concepts of type flow analysis and detail its use in reduc-
ing runtime overhead in Oberon-2 [47]. Their main goal is to eliminate irrelevant dynamic type
tests. The type flow analysis of Lisaac is notably more complete to handle all kinds of variables of
object-oriented languages (see Section 2.2). Furthermore, we introduce in Section 2.3 an innovative
approach to handle type of elements within arrays. This is a key point of our strategy because it
allows us to perform a real global program analysis.

The Vortex compiler [48] is a language-independent optimizing compiler for object-oriented
languages. There are front-ends for Cecil, C++, Java, and Modula-3. Vortex is an excellent tool
to quantify the benefits of object-oriented optimizations. Actually, most Vortex optimizations are
present in the Lisaac compiler, and the type flow analysis of Lisaac is both intraprocedural and
interprocedural. Vortex provides selective recompilation, whereas Lisaac does not. Rather than
specializing exhaustively, Vortex is guided by dynamic profile data to selectively specialize only
heavily used methods. Techniques in Vortex such as profile-guided optimizations and selective
recompilation might be profitably added to our compilation strategy.

The type inference carried out for the Self language in [49] is similar to the Lisaac approach:
each expression is considered separately. Their algorithm does not work on the full transitive clo-
sure graph but on a fragment only. The code generation is then performed by using this fragment

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

588 B. SONNTAG AND D. COLNET

(size Mb)
35

/

v

/

(default)

0 10 20 30 40 50
(inlining level)

Figure 23. Impact of the inlining level on the binary size of the Lisaac compiler itself.

rTTT T T T A== =======- r==-=-======-=-- B 1

! ! , ' Binary size

c / A : 130.74s C:76Kb

4 Lisaac:88Kb
Lisaac .43s
c .67s
Lisaac .15s
c .87s
Lisaac .48s
c .33s
Lisaac _70s

Figure 24. MPEG?2 runtime benchmark.

before doing an inference on a larger fragment. This method is less expensive in terms of memory
because it is an incremental process. On the other hand, the number of possible dynamic type for
one call site is never static, even at code generation time. Our approach requires a superset of all the
possible dynamic types for each method call.

Marmot [12] is an optimizing compiler for a large subset of Java. Marmot is intended primarily as
a high-quality research platform. Marmot performs a class hierarchy analysis [28] and a complete
program analysis. It takes verified bytecode as input instead of Java source code, and it still uses
VFT. Marmots object-oriented optimizations are implemented using a combination of intermodule

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 589

flow-insensitive and per-method flow-sensitive techniques. Contrary to our methods, flow analysis is
not globally performed. The authors also indicate that optimum performance is best achieved under
the CWA. The stack allocation optimization of Marmot improves locality and reduces garbage col-
lection overhead by allocating objects with bounded lifetimes on the stack rather than on the heap.
Such a stack allocation should be added in our compilation strategy. Marmot offers a choice of
three garbage collection schemes: a conservative collector, a copying collector, and a generational
copying collector.

As presented in [50], staying type-safe when inlining a virtual method may cause problems
between the receiver’s static and dynamic type. However, with our approach, the dynamic type
dispatching is realized before inlining, and thus, the problem does not even exist. In [51], a global
program analysis with type inference is performed on a Smalltalk like language. Yet, the graph con-
tains all the type information that can be derived from the program without keeping track of NULL
values or flow analyzing the contents of the instance variables. The collected information is close to
the RTA algorithm applied on static type languages.

The Fiji VM [44] compiles Java bytecode to C for Embedded Hard Real-Time Devices also using
the CWA. Fiji features many similarities with Lisaac: type propagation both intraprocedural and
interprocedural using a static single assignment intermediate representation. In addition, Fiji takes
into account multithreading with a concurrent real-time garbage collector. The major difference is
that Fiji still uses VFTs.

7. FUTURE WORK

We have learned from Eiffel the fundamental aspects of design by contract to make the code more
readable, to validate it, and to ease debugging. We are now experimenting with design by contract
as a possible source of information for the compiler to optimize the code. Roughly, the main idea
is to make the assumption that preconditions, postconditions, and invariants that are written by the
programmer are always correct and may be trusted by the compiler. We hope that combining the
information gathered by data/type flow analysis will allow better code optimization. When consid-
ered valid, design by contract information could be used to perform high-level optimizations. Static
detection of contract violations is also something we want to investigate. While the distribution of
computation over the network can be reasonably achieved, thanks to library support, efficient access
to local multicore power is an important point we need to address. We are currently working on a
brand new concurrency model, compatible with our compilation strategy, also using CWA, allowing
safe usage of multithreading.

8. CONCLUSION

The compilation strategy we presented is the result of a long project on two real-size compilers,
SmartEiffel being historically the precursor of the advanced compilation strategy of Lisaac. Whereas
both compilers work under CWA, Lisaac adds type flow analysis, also looking inside arrays with
a simple technique (Section 2.3). As a consequence, the type flow analysis is not blocked while
reading references of objects from arrays, making a truly global type flow analysis possible. Global
type flow analysis combined with code customization allows us to predict the dynamic type of
numerous method calls. For instance, in the whole Lisaac compiler, 98% of method calls are stat-
ically resolved and replaced with static calls (Section 5.2). To tackle the explosion of code size,
we set up our ATS method customization strategy together with transformation rules inside the
dispatch branching code (Sections 3.2.3 and 3.3). As an important result, inlining of closures as
well as tail recursion removal allows a perfect translation of the library-defined control statements
(Sections 3.3.1 and 3.3.2). Our compilation strategy could be used for most object-oriented, class-
based or prototype-based languages, assuming the availability of the whole source code of the
application. Throughout the article, compiler writers may find useful measurements to guide their
decisions when they have to choose amongst optimizations.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

590 B. SONNTAG AND D. COLNET

APPENDIX A: FOCUS ON STEP 2

D ——
'
.. e L L L L L L L L L L L L LT T
' kY

[

Implementation of
dynamic dispatch using
branching code
(Section 3.1)

For all
live
instructions

A 4 y \ A A4

SWITCH BOOLEAN CALL LOOP Other
EXPRESSION LOOP instructions

production
(Section 3.3.2)

A A4

Delete Branch Optimization Inlining Method Loop invariant
Branch merging of reference method customization detection
(Section 3.6) comparisons (Section 3.3) (Section 3.2) (Section 3.4)
(Section 3.5) v
Jr \ + \ \ \ Type flow
Analysis with
data flow
y Analysis
Dead code I
Elimination
No
Stable ?
Y
.. 1ves STEP 2‘
-- I.-.....---...._________________________________
'
.
v STEP 3}
ACKNOWLEDGEMENTS

The authors wish to thank Xavier Oswald for contributing to this project with insightful discussions, ideas,
and programming support of some benchmarks. We also thank Jean-Pierre Camal and Vasilica Le Floch for
their many helpful suggestions. Pierre-Alexandre Voye also helped us clarify some parts of the article. We
thank Matthieu Herrmann, Philippe Ribet, Cyril Adrian, Nicolas Boulay, Claire Quirke, and Karen Fournier.
We also thank the anonymous referees for their helpful comments.

REFERENCES

1. Sonntag B, Colnet D. Lisaac: the power of simplicity at work for operating system. In 40th Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific’2002). Australian Computer Society: Sydney, Australia,
2002; 45-52.

2. Sonntag B, Colnet D, Zendra O. Dynamic inheritance: a powerful mechanism for operating system design. ‘Intercon-
tinental Workshop on Object-Orientation and Operating Systems (OOOSWS’2002)’ — ECOOP’02 Workshop Reader
— Malaga, Spain, 2002; 25-30.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592
DOI: 10.1002/spe

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

28.

COMPILING OBJECT-ORIENTED LANGUAGES UNDER CLOSED-WORLD ASSUMPTION 591

. Zendra O, Colnet D, Collin S. Efficient dynamic dispatch without virtual function tables. The smalleiffel compiler.

In 12th Annual ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’97). ACM Press: Atlanta, Georgia, 1997; 125-141.

. Goldberg A, Robson D. Smalltalk-80, the Language and its Implementation. Addison-Wesley, Reading:

Massachusetts, 1983.

. Ungar D, Smith RB. Self: the power of simplicity. In 2nd Annual ACM Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA’87). ACM Press: Orlando, Florida, 1987;
227-241.

. Chambers C. The Design and Implementation of the SELF Compiler, an Optimizing Compiler for Object-Oriented

Programming Languages. Department of Computer Science of Stanford University: California, 1992.

. Chambers C, Ungar D. Customization: optimizing compiler technology for SELF, a dynamically-typed object-

oriented language. In 4th Annual ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89). ACM Press: New Orleans, Louisiana, 1989; 146-160.

. Dixon R, McKee T, Schweitzer P, Vaughan M. A fast method dispatcher for compiled languages with multiple

inheritance. In 4th Annual ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’89). ACM Press: New Orleans, Louisiana, 1989; 211-214.

. Vitek J, Horspool R. Taming message passing: efficient method look-up for dynamically typed languages. In

8th European Conference on Object-Oriented Programming (ECOOP’94). Springer-Verlag: Bologna, Italy, 1994;
432-449. LNCS 821.

Grove D, Chambers C. A framework for call graph construction algorithms. ACM Transaction on Programming
Languages and Sytems 2001; 23(6):685-746.

Zibin Y, Gil J. Fast algorithm for creating space efficient dispatching tables with application to multi-dispatching.
In 17th Annual ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’2002). ACM Press: Seattle, Washington, USA, 2002; 142-160.

Fitzgerald R, Knoblock TB, Ruf E, Steesgaard B, Tarditi D. Marmot: an optimizing compiler for Java. Software
Practice & Experience 2000; 30(3):199-232.

Collin S, Colnet D, Zendra O. Type inference for late binding. the SmallEiffel compiler. In Proceedings of the
Joint Modular Languages Conference, Vol. 1204, Lecture Notes in Computer Sciences, Lintz, Austria, 1997
67-81.

Colnet D, Coucaud P, Zendra O. Compiler support to customize the mark and sweep algorithm. ACM SIGPLAN
International Symposium on Memory Management (ISMM’98) 1999; 34(4):154-165.

Zendra O, Colnet D. Coping with aliasing in the GNU Eiffel Compiler implementation. Software Practice &
Experience 2001; 31(6):601-613.

Futamura Y. Partial evaluation of computation process — an approach to a compiler—compiler. Reprinted in
Higher-Order and Symbolic Computation 1999; 12(4):381-391.

Consel C, Danvy O. Tutorial notes on partial evaluation. 20th Annual ACM Symposium on Principles of Programming
Languages, Charleston, SC, 1993; 493-501.

Ducournau R, Morandat F, Privat J. Empirical assessment of object-oriented implementations with multiple inheri-
tance and static typing. In 24th Annual ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’09). ACM Press: Orlando, Florida, USA, 2009; 41-60.

Bacon DF, Sweeney PF. Fast static analysis of C++ virtual function calls. In //th Annual ACM Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’96), Vol. 31(10). ACM Press: San
Jose, California, 1996; 324-341.

Neil D. Jones flow analysis of lambda expressions. Lecture Notes in Computer Science, Automata, Languages and
Programming 1981; 115:114-128.

Shivers O. Control-flow analysis in scheme. In Conference on Programming Language Design and Implementation
(PLDI), Vol. 23(7). ACM SIGPLAN Notices: Atlanta, Georgia, 1988; 164—174.

Blanchet B, Cousot P, Feret J, Mauborgne L, Min A, Monniaux D, Rival X. A static analyser for large safety-critical
software. In Conference on Programming Language Design and Implementation (PLDI), Vol. 38. ACM SIGPLAN
Notices: San Diego, California, 2003; 196-207.

Jones R, Lins R. Garbage Collection. Wiley, 1996. ISBN 0-471-94148-4w.

Colnet D, Coucaud P, Zendra O. Compiler Support to Customize the Mark and Sweep Algorithm. In International
Symposium on Memory Management (ISMM’98), Vancouver, Canada, 1998; 154-165.

Colnet D, Sonntag B. Paper in French: Analyse simple de types dans les tableaux et optimisation du ramasse-
miettes. Conférence en IngénieriE du Logiciel (CIEL’12), Rennes, France. Available from: http://gpl2012.irisa.fr/
sites/default/files/CIEL2012-Colnet-paper17.pdf.

Conférence en IngénieriE du Logiciel (CIEL’12), Rennes, France

Ellis MA, Stroustrup B. The Annotated C++ Reference Manual. Addison-Wesley, Reading: Massachusetts, 1990.
Driesen K, Holzle U. The direct cost of virtual function calls in C++. In /1th Annual ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA’96), Vol. 31(10). ACM Press: San Jose,
California, 1996; 306-323.

Dean J, Grove D, Chambers C. Optimization of object-oriented programs using static class hierarchy analysis. In 9th
European Conference on Object-Oriented Programming (ECOOP’95). Springer-Verlag: Aarhus, Denmark, 1995;
77-101. LNCS 952.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592

DOI: 10.1002/spe

592 B. SONNTAG AND D. COLNET

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Agesen O. The cartesian product algorithm: simple and precise type inference of parametric polymorphism. In 9th
European Conference on Object-Oriented Programming (ECOOP’95). Springer-Verlag: Aarhus, Denmark, 1995;
2-26. LNCS 952.

Shao Z, Appel AW. Space-efficient closure representations. In ACM Conference on Lisp and Functional
Programming (ICFP’1994). ACM Press: Orlando, Florida, 1994; 150-161.

Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading: Massachusetts, 1995.

André P, Royer J-C. Optimizing method search with lookup caches and incremental coloring. In 7th Annual ACM
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’92), Vol. 27(10).
ACM Press: Vancouver, British Columbia, Canada, 1992; 110-127.

Driesen K. Selector table indexing and sparse arrays. In 8th Annual ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’93), Vol. 28(10). ACM Press: Washington, D.C.,
1993; 259-270.

Driesen K, Holzle U. Minimizing row displacement dispatch tables. In /0th Annual ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA’95), Vol. 30(10). ACM Press: Austin, Texas,
1995; 141-155.

Palacz K, Vitek J. Java subtype tests in real-time. In /7th European Conference on Object-Oriented Programming
(ECOOP’03). Springer-Verlag: Darmstadt, Germany, 2003; 378-404.

Ducournau R. Perfect hashing as an almost perfect subtype test. ACM Transaction on Programming Languages and
Sytems 2008; 30(6):1-56.

Lee H, Dincklage D, Diwan A, Eliot Moss JB. Understanding the behavior of compiler optimizations. Software
Practice & Experience 2006; 36(8):835-844.

Holzle U. Adaptative optimization for Self: reconciling high performance with exploratory programming. Ph.D.
Thesis, Stanford University, 1994. CS-TR-94-1520.

Deutsch PL, Schiffman A. Efficient implementation of the smalltalk-80 system. //th Annual ACM Symposium on
Principles of Programming Languages, Salt Lake City, UT; 1984.

Ungar D, Patterson D. What Price Smalltalk? IEEE Computer 1987; 20(1):67-74.

Driesen K, Holzle U, Vitek J. Message dispatch on pipelined processors. In 9th European Conference on
Object-Oriented Programming (ECOOP’95). Springer-Verlag: Aarhus, Denmark, 1995; 253-282. LNCS 952.
Hlzle U, Chambers C, Ungar D. Optimizing dynamically-typed object-oriented languages with polymorphic inline
caches. In 5th European Conference on Object-Oriented Programming (ECOOP91), Vol. 512. Springer-Verlag:
Geneva, Switzerland, 1991; 21-38.

Aigner G, Holzle U. Elimination virtual function calls in C++ programs. In /0th European Conference on
Object-Oriented Programming (ECOOP’96). Springer-Verlag: Linz, Austria, 1996; 142—-166. LNCS 1098.

Pizlo F, Ziarek L, Blanton E, Maj P, Vitek J. High-level programming of embedded hard real-time devices. In 5th
European Conference on Computer systems (EuroSys’10). ACM SIGOPS: Paris, France, 2010; 69-82.

Privat J, Ducournau R. Link-time static analysis for efficient separate compilation of object-oriented languages. In
6th Workshop on Program Analysis for Software Tools and Engineering (PASTE’05). ACM SIGPLAN-SIGSOFT:
Lisbon, Portugal, 2005; 20-27.

Corney D, John Gough J. Type test elimination using typeflow analysis. In Proceedings of Programming Languages
and System Architectures, Vol. 792, Lecture Notes in Computer Sciences. Springer-Verlag, 1994; 137-150.
Mossenbock H, Wirth N. The Programming Language Oberon-2. Computer Science Report 160, ETH Zurich,
May 1991.

Dean J, DeFouw G, Grove D, Litvinov V, Chambers G. Vortex: an optimizing compiler for object-oriented
languages. In 71th Annual ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’96), Vol. 31(10). ACM Press: San Jose, California, 1996; 83—100.

Agesen O, Palsberg J, Schwartzbach MI. Type inference of SELF: analysis of objects with dynamic and multiple
inheritance. Software Practice & Experience 1995; 25(9):975-995.

Glew N, Palsberg J. Type-safe method inlining. In /16th European Conference on Object-Oriented Programming
(ECOOP’02). Springer-Verlag: Mdlaga, Spain, 2002; 525-544.

Palsberg J, Schwartzbach MI. Object-oriented type inference. In 6th Annual ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’91), Vol. 26(11). ACM Press: Phoenix, Arizona,
1991; 146-161.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:565-592

DOI: 10.1002/spe

