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SUMMARY

A widespread practice to implement a flexible array is to consider the storage area into two parts: the used
area, which is already available for read/write operations, and the supply area, which is used in case of
enlargement of the array. The main purpose of the supply area is to avoid as much as possible the reallocation
of the whole storage area in case of enlargement. As the supply area is not used by the application, the main
idea of the paper is to convey the information to the garbage collector, making it possible to avoid completely
the marking of the supply area. We also present a simple method to analyze the types of objects, which are
stored in an array as well as the possible presence of NULL values within the array. This allows us to better
specialize the work of the garbage collector when marking the used area, and also, by transitivity, to improve
overall results for type analysis of all expressions of the source code. After introducing several abstract data
types, which represent the main arrays concerned by our technique (i.e., zero or variable indexing, circular
arrays and hash maps), we measure its impact during the bootstrap of two compilers whose libraries are
equipped with these abstract data types. We then measure, on various software products we have not written,
the frequency of certain habits of manipulation of arrays, to assess the validity of our approach. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A well-known technique for implementing a flexible array is to organize the storage area into two
parts: the memory area currently being used and the reserve memory area. The size of the used area
gives the current size of the flexible array, and if the program behaves normally, only the used area is
accessed for read/write. When the array is to be extended, extra space is taken first in the supply area.
If the supply area is exhausted, the whole storage area must then be reallocated in order to provide
for a large enough new storage area, which most often involves copying out the used area. To limit
reallocations and copies as much as possible, one has to find the right balance to resize the supply
area. As the supply area is not visible by the user program, zeroing of that area is not required. In
case of decrease in the size of the flexible array, it is enough to change the boundary mark between
the two areas, leaving all values in the storage unchanged. Thus, all along the execution, the supply
area may grow or shrink, containing whatever values.

The main idea of this paper is to adapt the garbage collector (GC [1]) so that supply areas, which
correspond to inaccessible objects of the application, be completely ignored during the marking
phase. Our contributions are summarized in the following text:
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� Presentation of the abstract data type for flexible arrays indexed from zero. Type analysis for
the content of arrays with detection of the NULL value. Tuning of the GC to ignore the supply
area and to use type information.
� Adaptation of our technique for other kinds of arrays. Abstract data types for user-defined

indexing, circular arrays and hash maps.
� Evaluation of the garbage collection savings during the bootstrap of the SmartEiffel compiler,

a large program using the previously defined abstract data types.
� Measurements of the impact of the type analysis carried out for arrays during the bootstrap of

the Lisaac compiler. Also a large benchmark.
� Detailed experimental evaluation of the arrays habits using a suite of programs including real-

life programs written in C or Java.

The results presented here come from the work performed in the SmartEiffel project [2, 3] and
also in the Lisaac project [4, 5]. SmartEiffel consists of a compiler for the Eiffel language as well
as a class library including all the kinds of arrays described in this article. The new optimization
for marking arrays we present here is to be added to the previously published results in [6]. Lisaac
is also a compiler with a large library, for a prototype-based language. The arrays described in this
article are also part of the Lisaac’s library. Both compilers are completely bootstrapped, written with
the language they translate, and both are using the arrays presented here. The compilation strategy
of Lisaac is more advanced than the one of SmartEiffel, particularly with regard to type analysis
(see [5] for details).

The rest of the paper is organized as follows. In Section 2, we present, using the example of a
simple flexible array, how it is possible to draw part of the filling up strategy to optimize both the
garbage collection and type analysis. The foundations being laid, we present in Section 3 how it
is possible to implement similar strategies for other kinds of more complex arrays. To show the
gain obtained, we present in Section 4, the measurements we made during the bootstrap of two
compilers, SmartEiffel and Lisaac, as well as the measurements for some other large applications,
written with other languages/libraries. We then discuss in Section 5 the importance of the choices
made by the languages designers to ensure the initialization of memory areas, and we also present
work in connection with this article. Finally, Section 6 concludes this article.

2. SETTING UP WITH SIMPLE FLEXIBLE ARRAYS

2.1. Abstract data type for flexible arrays

Before taking into account other forms of arrays to start, we now consider the simple case of a flex-
ible array indexed from zero. The array can dynamically expand or shrink its size during execution.
The leftmost element is always accessible with index 0. Figure 1 shows how to manage the array
using three variables. The storage variable allows access to the elements storage area, and the
capacity variable stores the allocation size of this area. The size variable is the current size
of the array as it is seen by the user. This variable also determines the boundary between the used
area and the supply area. The following four operations completely define the abstract data type that
represents the flexible array.

Figure 1. Handling a flexible ARRAY with three variables: storage, size and capacity. The array is
filled up from left to right, cell after cell, in order to avoid uninitialized values.
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Create(cap) The creation operation to be used in order to prepare a new empty array with a given
capacity cap:

assert (cap >= 0);
capacity = cap; size = 0; storage = malloc(cap);

Extend(obj) To extend by one the array on its right, writing obj in the new slot. In case of
reallocation (i.e. when the supply area is empty), the capacity is increased twofold:

if ( size >= capacity ) {
capacity = capacity * 2;
storage = realloc(storage, capacity);

}
storage[size] = obj;
size = size + 1;

Read(ind) This function returns the object stored at index ind assuming that the index is correct,
that is, a valid index in the used area:

assert ((0 <= ind) && (ind < size));
return storage[ind];

Write(ind, obj) Change the value at index ind using obj for the replacement, assuming that the
ind is a valid index in the used area:

assert ((0 <= ind) && (ind < size));
storage[ind] = obj;

The four operations that we have given (Create, Extend, Read and Write) completely de-
fine the abstract data type for flexible arrays. We will see later how the GC can be made to ignore the
supply area altogether. Before that, note that these operations force voluntarily the filling up from
left to right by requiring the user to extend the array element by element. We made this decision
to facilitate the type analysis of the content of arrays and, in particular, to facilitate the detection
of NULL.

2.2. Type analysis for the content of arrays

Type analysis in object-oriented languages allows a better implementation of dynamic dispatch or
even, under certain circumstances, the replacement of some late binding call sites with direct static
calls. Prediction of the NULL values makes it possible to detect statically that some calls will fail
at runtime. Many research papers have been published regarding type analysis or NULL predic-
tion: [2, 5, 7–15]. Previous research papers address type analysis for the self or this variable,
instance variables, formal parameters, local and global variables. When looking for type analysis
inside arrays, there is, as far as we know, nothing published yet.

In the Lisaac compiler, we perform a type flow analysis that one must not mix up with data flow
analysis. Data flow analysis consists in taking into account the order of statements to gather a precise
piece of information, sometimes even perfect, that is, allowing to know exactly the reference of the
real object or the real value of certain expressions. Often, data flow analysis makes it possible to
improve type flow information, nevertheless, such an accurate type of information is not required
to implement our type analysis for the content of arrays. What we call type flow analysis is the
computation, for a given expression, of its set of possible dynamic types, not taking into account the
order of statements. For instance, using all the reachable assignments in a variable, we compute all
the possible types for that variable. The analysis is flow insensitive, that is, the order of reachable
assignments does not matter. We consider on the whole the set of reachable assignments.

Concerning instance variables, we do not discriminate between the different instances from the
same class (Figure 2); the type information is identical for all instances of a given class. For a
formal method argument, we use the set of reachable effective arguments, that is, all reachable calls.
Classically, to obtain the set of dynamic types of a given method call, we consider all the methods
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Figure 2. Type flow analysis for instance variable vehicle from class OWNER. Order of statements is not
relevant, and the result, which is {NULL, TRUCK, CAR}, is for all instances of the class OWNER.

that could be dynamically linked with the receiver type set, that is, a kind of dynamic dispatch
simulation. To complete the coverage of all kinds of expressions, we propose in the following a
simple technique to propagate type flow analysis for array read/write operations.

For the type analysis, all cells of the array are considered as a whole, regardless of index variation.
We are using a unique type set for all elements of the array. As an example, if a TRUCK is written at
index 1, we consider that all read accesses, whatever the index used, may yield a TRUCK. If another
write sequence of a CAR exists somewhere in the reachable code, all cells are considered as potential
holders of objects of type TRUCK or CAR. More generally, assuming that Sarray is the type set of
the array, as soon as one index is possibly assigned with an expression having Sexpr as type set,
Sarray is changed as Sarray [ Sexpr . This is a direct application of the array smashing technique
of [16] using dynamic types instead of scalar values.

In the rest of the paper, the NULL value, which represents the lack of reference is simply con-
sidered as a possible type, and its occurrence inside the type set indicates that the corresponding
expression can have the NULL value. For instance, in Figure 2, the set of possible types of the
vehicle instance variable includes NULL. In the case of flexible array, the choice to start by cre-
ating an empty array, which extends cell by cell, facilitates the detection of the NULL value. Indeed,
starting from an empty array, if no write operation (i.e. Extend or Write) introduces NULL, we
statically know that this array never contains NULL at runtime. With this knowledge, it is possible
to customize the marking procedure in order to focus on the sole used area, completely ignoring the
supply area. Furthermore, inside the used area, it is possible to specialize the marking code accord-
ing to type analysis results. Obviously, this is also true for all method calls applied to objects read
from the array: Read(ind).methodCall().

For the compiler implementation, storing the type flow information for an array can be performed
in two ways. The first keeps all the possible types for an array by making successive unions with the
set of types that an expression inserted in the array can take. This is a straightforward application of
the previous definition. However, if the set of types of the expression inserted in the array is incom-
plete or not known, which can happen at the beginning of the compilation, then there is another way
to proceed. This second solution involves a list of expressions. Every expression ever written to the

Figure 3. Two solutions to wrap all three array manipulation variables, capacity, size and storage,
in order to handle the array with a single reference.
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array is memorized. This is just a matter of keeping the list of calls to the Extend and Write for
a particular array. The type set of an array can then be computed on demand by propagating the call
to the expressions stored earlier, when all of those expressions obtain their set of possible types.

Figure 3 presents two solutions to reference as a whole all the components of the flexible array.
Solution 1 is well adapted to object-oriented programming as it encapsulates variables capacity,
size and storage in an object. This is also very convenient in case of reallocation of the
storage area because the reference to the object does not need to be changed. Solution 2 avoids
the extra indirection to access the storage area. The size and capacity are to be reached
by moving the pointer by one or two words backward. Solution 2 is actually the usual C malloc
solution to memorize the size of the memory chunk. That size is necessary in case of a free call.

2.3. Avoiding supply area traversal during garbage collection

The most straightforward optimization is to ensure that the GC scans only the useful area of the
array (i.e. the indexes 0 to size - 1), completely ignoring the supply area. In the SmartEiffel
library, zero indexed flexible arrays are represented with the FAST_ARRAY class, using solution 1 of
Figure 3. The compiler allows to partially redefine the marking procedure for the storage area,
making it possible to traverse only the useful part, that is, the user-visible part of the array. Thus,
the FAST_ARRAY class is equipped with a template method definition to drive the storage area
scanning:

GarbageCollectorMark()

int idx = size - 1;
while ( idx > 0 ) {

MarkOneItemOf(storage, idx); // Generated by the compiler (Section 2.4).
idx --;

}

What is performed in the SmartEiffel library to ignore the supply area is easily applicable in Java
whatever the category of the GC (i.e. mark and sweep, copying collector or reference counting). In-
deed, Java arrays are managed by the virtual machine and are always initialized to zero. Arrays of
references are already provided with a header that indicates the size of the array and other informa-
tion such as those concerning, for example, the type of the elements. All write operations in arrays
of references go through the execution of the aastore bytecode. It is particularly easy to change
the Java virtual machine to avoid, during a GC cycle, the unnecessary traversals of supply areas.
One extra index in each array descriptor is enough for the GC to be informed of the boundary of the
supply area. Thus, the aastore bytecode can be modified as follows:

aastore(array, value, index) {
// Unmodified original aastore code here (i.e. array bounds check followed by
// memory write as well as dynamic type check of the value).
// As an exception is raised when bounds check fails, the index is always valid in the
// following extra code:
if ( index > gc_boundary ) {

gc_boundary = index; // Supply area shrinked.
}

}

The index gc_boundary must be initialized to zero when creating the array. In Java, for se-
curity reasons, all arrays of references are initialized with null. It is therefore possible to move
the boundary of the supply area (i.e. gc_boundary) without special precautions. Note that no
change is needed for read operations that could occur beyond the index gc_boundary. All val-
ues beyond the gc_boundary index return null and do not affect the GC. Of course, one must
also modify the code of the GC so that it takes into account the new frontier (i.e. the GC uses
array.gc_boundary instead of array.length - 1).
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2.4. Using type information to optimize garbage collection of arrays

The type flow information of the array elements is integrated to the GC as it is already the case for the
objects’ attributes. SmartEiffel generates a specialized and precise marking function for every object
type and without interpretation during execution (for details about SmartEiffel’s GC, see [6]). The
GC code is generated differently for every application; it is adapted to every manipulated object and
is integrated in the final executable. The marking code has a static (hard-coded) knowledge of the
object’s structure. As an example, an instance variable, which is of type integer, character, or floating
point number, is simply ignored (i.e. no marking code is generated for them), because such a variable
is not a possible path toward another object. Only attributes that are references are inspected. Yet
another improvement, thanks to type flow analysis, in case an attribute is monomorphic (i.e. when
the type set of that attribute has only one type), the function call to the marking code is direct.
Polymorphic attributes still need the usual dispatching code to the corresponding marking code.

This specialization used for attributes (described in [6]) is now also applied to arrays when iterated
in their initialized area. In the particular case of an array that cannot contain NULL references, the
NULL test is omitted while scanning the array. It is also possible to avoid a dynamic call if all the
elements of an array have only one possible dynamic type, and if it is the same for all the elements.
For the general case, type analysis results are used to produce the dispatch marking code, as we do
for ordinary late binding calls. The internal MarkOneItemOf call in the loop is processed by the
compiler to profit from type analysis results as follows:

MarkOneItemOf(array, index)

item = array[index]; // Array access into the local item variable.

if ( item == NULL ) { // Code generated if and only if the null
return; // type is in the type set of the array.

}

switch ( item->dynamic_type ) { // Switch generated only when the type set
// has more than one non null element.

case TRUCK: // Case branch generated only when the
MarkTRUCK(item); // array type set has TRUCK as element.
break;

case CAR: // Case branch generated only when the
MarkCAR(item); // array type set has CAR as element.
break;

...
}

2.5. Extra built-in operations for flexible arrays

As might be expected, the FAST_ARRAY class is equipped with many other methods. Most of them
are simple combinations of previously defined methods of Section 2.1, as such, they require no
special support by the compiler, type analysis results being carried out by transitivity. Given our type
analysis technique, methods that reduce the size of the visible area do not need particular compiler
support. As an example, the method to remove the rightmost element can be simply defined as
follow:

RemoveLast()

assert (size > 0);
size--;
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Note that it is not necessary to reset with NULL the cell that has been assigned to the supply area, as
such, that cell will be simply ignored when marking. Thus, in theory, only the methods defined in
Section 2.1 are subject to compiler support for type analysis. In practice, as it is not always practical
to build an array, little by little, cell by cell, the library features some other built-ins. The Calloc
built-in allows to allocate and initialize an array with just one call. While the real implementation
relies on the efficient C calloc, the effect, in terms of type analysis is equivalent to the following
code:

Calloc(siz)

assert (siz >= 0);
Create(siz);
while ( size < siz ) {

Extend(NULL);
}

As a consequence, such an allocated new flexible array is a potential holder of the NULL value. We
needed this built-in to optimize the implementation for all hashing collections (hash table, dictio-
nary, hashed set, . . . ). Implementing a hash table requires creating an array initialized with NULL and
having its size match its capacity. Notice that for performance reasons, calloc actually uses the
memset function from the C language, making it possible for the code to use the specific processor
instructions that initialize entire areas in memory. Also for performance reasons, the FAST_ARRAY

class is also equipped with another built-in to extend arrays with a large number of cells. That
built-in uses the C realloc function to minimize and optimize data moving in memory.

3. HANDLING OTHER KINDS OF ARRAYS

Zero indexed array (e.g. SmartEiffel’s FAST_ARRAY) is not the only one class to be handled with a
progressive filling up strategy and possibly equipped with high-level garbage collection tuning.

3.1. The ARRAY class

An object of the ARRAY class is an array that can have any integer value for the leftmost index.
Positive value, zero or a negative value as well. Except for index translation, which needs an extra
attribute, gradual left-to-right filling is appropriate. The implementation is straightforward and very
similar to the one of FAST_ARRAY. Obviously, we obtain the same benefits in terms of garbage
collection and type analysis. Let us now see how to handle circular arrays.

3.2. The RING_ARRAY class

Adding elements in front of a FAST_ARRAY or in front of an ARRAY cannot be made efficiently.
As all elements have to be shifted to the right, this makes the operation very slow. To address this
problem, the SmartEiffel library provides the RING_ARRAY class for managing an array circularly.
In order to keep the flow analysis that can detect the absence of NULLs, it is necessary to adapt the
filling up technique. Figure 4 shows how it is implemented and the new variables required. In the
example, the same array with indexes from 11 to 14 is shown twice. The first shows a case where
the used area is in one part, and the supply area is split in two parts. The second shows the inverse
case, but many other situations are possible.

As for previous arrays, the storage variable points to the beginning of the allocated area,
and the capacity variable memorizes its size. The lower and upper variables memorize the
lower and the upper bound from the user’s point of view, that is, the publicly visible part of the
RING_ARRAY. The storage_lower variable is used internally and matches the physical index
for the lower indexed element in storage. As such, the storage_lower variable always
stays between 0 and capacity - 1.
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Figure 4. Implementation of a RING_ARRAY with five variables. The user’s visible range is [lower,
upper]. The storage_lower internal variable is the corresponding index of element at lower index
inside storage. Because the used area unfolds circularly starting at any possible storage_lower, there

are many possibilities.

The following operations define the abstract data type for the RING_ARRAY, keeping type flow
analysis properties.

RingCreate(cap, low) Creation of an empty RING_ARRAY. The lower index is initialized with low
and the initial capacity with cap:

assert (cap >= 0);
capacity = cap; lower = low;
storage = malloc(cap);
storage_lower = 0; upper = low - 1;

As for the creation of noncircular arrays, the initial used area is empty, and the set of possible types
is initialized with the empty set.

RingExtend(obj) To extend by one the array on its right. When the supply area is empty, as
previously, the capacity is made twice as big:

if ( upper - lower + 1 >= capacity ) {
capacity = capacity * 2;
storage = realloc(storage, capacity);

}
sidx = upper + 1 - lower + storage_lower;
if (sidx >= capacity) {

sidx = sidx - capacity;
}
storage[sidx] = obj; upper = upper + 1;

As for other arrays, as soon as a call of RingExtend is in the reachable code, all slots are
considered as possible holders of obj’s types.

RingPrepend(obj) To extend by one the array on its left. The type flow information is maintained
the same way we did for RingExtend. Only the index computation in the storage area is
different:

if ( upper - lower + 1 >= capacity ) {
capacity = capacity * 2;
storage = realloc(storage, capacity);

}
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storage_lower = storage_lower - 1;
if (storage_lower < 0) {

storage_lower = storage_lower + capacity;
}
storage[storage_lower] = obj; lower = lower - 1;

RingRead(ind) To access the element, which is at index ind, assuming that ind is a valid index
in the visible area:
assert (lower <= ind) && (ind <= upper);
sidx = ind - lower + storage_lower;
if (sidx >= capacity) {

sidx = sidx - capacity;
}
return storage[sidx];

As this only reads the array and does not modify it, it does not change the type flow information
previously gathered.

RingWrite(ind, obj)

assert (lower <= ind) && (ind <= upper);
sidx = ind - lower + storage_lower;
if (sidx >= capacity) {

sidx = sidx - capacity;
}
storage[sidx] = obj;

As usual, because this adds a new value in the array, the possible types of obj must be all added
into the set of possible types contained in the array.

And finally, to complete the description of the abstract data type for RING_ARRAY, we have to
make the GC aware of the visible area with the following template definition:

GarbageCollectorRingMark()

int cnt = upper - lower + 1;
int idx = storage_lower - 1;
while ( cnt >= 0 ) {

idx ++;
if (idx >= capacity) {

idx = idx - capacity;
}
MarkOneItemOf(storage, idx);
cnt --;

}

Again, the MarkOneItemOf call is generated by the compiler and customized according to type
analysis results. In the best case, there is only one possible type and the exact marking code for only
one kind of element is inlined.

3.3. Hash tables or hash maps using an array

More complex data structure using hashes, as for example hash sets, are using a primary array that
might contain NULL references or a reference to a storage cell (Figure 5). Access to this array uses
the hash code of the targeted object. If the array contains a NULL at the index corresponding to the
hash code, it means that the object is not present in the set. If the array contains a valid reference to

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



D. COLNET AND B. SONNTAG

Figure 5. Using an array as a hash map to implement a set. All the capacity of the storage area is
used, consequently, the supply area is empty. NULL values inside the array are meaningful.

a storage cell instead, the object can then be searched in the linked list composed of cells to account
for any collisions. In order to create the primary array, the built-in calloc is used. As the primary
array does not contain a reserved area for future expansion, the GC normally works by exploring
the whole array. And as it is absolutely common for the primary array to contain NULLs, the use of
calloc is clearly the best choice as it implies the presence of NULL in the set of possible types.

4. BENCHMARKS AND MEASUREMENTS

4.1. Garbage collection for arrays in SmartEiffel

We equipped the source code of the SmartEiffel’s GC with extra code in order to examine the impact
of arrays on memory footprint. To have a significant execution, we have used the whole source
code of the SmartEiffel compiler itself, that is, 180,000 lines of Eiffel source code during its own
bootstrap. The self recompilation of the compiler is a very good benchmark because it uses many
arrays and requires about 330 Mb of memory during the process. Moreover, the GC is triggered 32
times while compiling the compiler‡.

For the following measurements, only arrays of references are considered, because other arrays,
for example, arrays of integers or arrays of characters, are not directly concerned by our type flow
analysis technique. Moreover, the SmartEiffel GC does not even scan the content of arrays of scalars.

We modified the marking procedure for the content of arrays so as to count the number of marked
arrays during one recompilation. The measurement shows that the GC processes 6,399,198 arrays.
The total size of the corresponding used area scanned is 12,548,963 cells. As the total capacity
of processed arrays is 21,714,957 cells and because the supply area is not scanned, the GC avoids
scanning 9,165,994 cells, that is, a gain of 42%.

In order to gather more information, we examined the distribution of arrays during the very last
run of the GC, just before the final exit of the program. During the last run of the GC, among the
838,681 marked arrays, 31,859 are actually empty arrays. These empty arrays take direct advantage
of our optimization because they are marked in a constant time. By contrast, there are 453,215
arrays, which are completely filled up and, as a consequence, need to be entirely scanned. Figure 6
displays the distribution of arrays according to the relative size of the supply area. The filled up
arrays are represented in the leftmost bar, and the empty arrays are in the rightmost bar. In Figure 6,
the largest bar is for arrays having less than 10% of supply area, which seems to indicate that
SmartEiffel does not waste too much memory using arrays with large supply areas.

In addition, during the last run of the GC, we also measured that the total capacity of storage
was 3,242,679 cells including 1,440,568 cells in the supply areas. Using the distribution of arrays
from Figure 6, Figure 7 gives the corresponding capacities for storage. The values Min, Max and Avg
give, respectively, for each family (the 10% family, the 20% family and the 30% family), the smallest
capacity, the largest capacity and the average capacity. The average size of arrays is small and filled
up arrays represent 35% of the total memory used for arrays. Still using the same distribution of

‡The heap size is automatically tuned with the results of the memory collection.
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Figure 6. Bootstrap of SmartEiffel. Distribution of arrays according to the relative size of the supply area.
Only arrays of references are considered for Figures 6, 7 and 8 (same run).

Figure 7. Bootstrap of SmartEiffel. Following Figure 6 with the same distribution, the relative size of
capacities in number of cells.

Figure 8. Bootstrap of SmartEiffel. Following Figure 6 with the same distribution, the relative size of supply
areas in number of cells.

arrays, Figure 8 shows the corresponding sizes for the supply areas. The 80% family represents the
largest part of the memory used for the supply areas, which probably correspond to arrays used as
temporary buffers, growing and shrinking all along the execution.

If one compares the memory used for arrays of references (3,242,679 references) with the total
memory footprint during bootstrap (330 Mb, i.e. 82�106 references), the memory used for arrays
of references represents only 4% of that memory. Considering only the supply areas, it represents
even less, actually 1.7% of the total memory footprint. Thus, during bootstrap, the total memory
used for arrays of references is so small compared with the memory used for other objects that
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the gain of runtime because of optimized array marking is probably low. We modified the GC of
SmartEiffel in order to force scanning of the supply areas, but as expected, we did not notice any
discernible modification of runtime, either of memory used or in the number of GC calls.

4.2. Type flow analysis in the Lisaac compiler

While trying to perform a true global system analysis, the lack of type analysis concerning the
content of arrays has consequences in the rest of the analysis. For instance, as soon as a variable
is assigned with a reference read from an array, the lack of type information on the content of the
array is echoed on the information that was previously gathered for this variable. If this variable is
then copied into another variable or passed as an argument, the unclear information about the array
content propagates rapidly. Array read or array write operations are quite frequent, and it is thus
important to collect, then to transmit, type flow information concerning array contents.

The Lisaac compiler carries out a global type flow analysis for all kinds of variables: formal
parameters, local, global and instance variables. We also implemented our type flow analysis with
NULL detection inside arrays thus making type flow analysis really global. The gathered information
for arrays may impact all kinds of variables and transitively, all kinds of expressions, from methods
to methods without any border. We have used the source code of the Lisaac compiler itself, 53,000
lines of Lisaac source code, as a benchmark for the following measurements.

We modified the compiler in order to inspect the types of variables after type flow analysis com-
pletion. For the measurement, we kept only variables whose type is an array of references. Arrays
of scalar values (arrays of integers, arrays of characters or arrays of floats) are not considered be-
cause there is no possible polymorphism inside such arrays. Furthermore, only arrays of references
may hold NULL values. As explained previously, NULL is considered as a possible element in the
set of types, which describe cell contents. Figure 9 shows the distribution of type sets according to
the number of items in each set. The level of polymorphism is variable from 1 to 56 for the compiler
source code. As shown in the lower part of the figure, many arrays are statically detected without
possible NULL inside cells. For the source code of the compiler, this stands for 56.2% of arrays. Also
in Figure 9, the leftmost bar in the upper part indicates that 79 variables are holding arrays with only
one kind of elements (i.e. there are 79 variables holding monomorphic arrays). The corresponding
bar in the lower part indicates that 96% of those arrays never hold NULL values. As an example, for
such an array, which contains only TRUCK, the marking function generated by the compiler is

Figure 9. Bootstrap of Lisaac. Compile time information regarding types of arrays. The upper part gives
the distribution of arrays according to the number of elements in type sets. The lower part gives the

corresponding ratio of arrays without NULL.
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MarkOneItemOf(array, index)

MarkTRUCK(array[index]); // Direct static call of the marking function (no NULL check).

The upper right-hand bar of Figure 9 shows that only one variable obtains an array type with 56
kinds of objects mixed together in its cells. A close look at the source code taught us that this variable
was actually an instance variable. Thus, at runtime, each object holding that instance variable will
have its own megamorphic array, and as indicated by the lower right-hand bar, all those arrays will
never include the NULL value.

To examine the propagation of the type flow information from arrays to local variables, we mod-
ified the compiler in order to add artificially the NULL value inside all sets of types for all arrays.
Among the 10,429 local variables, before the modification of the compiler, only 3,202 have the
NULL value inside their type set, that is to say 30.7% of the local variables. Artificial addition of
the NULL value inside arrays infects 7,043 local variables, making 98.2% of local variables possi-
ble NULL holders. This experimentation shows that the result of type flow information for arrays
directly impacts on the type flow information for local variables. Figure 10 gives the detail of the
NULL propagation, local variables being sorted according to their level of polymorphism, which
varies from 2 to 57.

We then performed the same measurement for global variables and instance variables. Before
the artificial addition of the NULL value inside all arrays, 70.5% of global variables were already
NULL holders. After the modification, 98.5% of global variables became NULL holders. For instance
variables, the NULL propagation changes from 93.2% of NULL holders to 99.4%. Figure 11 details
the NULL propagation for global variables and instance variables.

To continue the study of array type flow propagation, we then artificially added into the type sets
of arrays, not only the NULL value, but also all compatible subtypes of the elements. For instance,
with an array of VEHICLEs, all encountered subtypes of VEHICLE are artificially added into the type
set: CAR is added, TRUCK is added, BIKE, and so on, not forgetting to add the NULL value. For local
variables, before the modification, there were 17 different type set sizes in the whole source code of
the compiler. After the modification, only 12 different sizes remain. Detailed distribution presented
in Figure 12 shows that the number of sets decreases and that these sets are bigger, thus indicating
that the accuracy of type flow analysis for local variable is drastically impacted by arrays.

4.3. Memory behavior analysis of some other C programs

In order to inspect other software products than SmartEiffel and Lisaac, we analyzed the memory
behavior of several other applications (Figures 13 and 14). To do this, we have developed a new
module for Valgrind [17] in order to observe the allocation of memory blocks that may correspond

Figure 10. Bootstrap of Lisaac. Before and after compiler modification. Adding extra NULL to each type of
array to view the propagation of the wrong information into local variables type sets. The number of local

variables is indicated inside each bar (upper part).
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Figure 11. Bootstrap of Lisaac. Before and after compiler modification. Adding extra NULL to each type of
array to view the propagation of the wrong information into instance variables (left) and global variables

(right).

Figure 12. Bootstrap of Lisaac. Propagation into local variables of array type sets saturation: NULL added
as well as all compatible types.

to arrays of pointers. All reads and writes in these blocks are dynamically analyzed until the end of
execution. Each time a read or write operation involves another data size than the memory pointer
size§, the corresponding block is excluded from the analysis because we want to study the sole
memory devoted to arrays of pointer, not the memory used for other objects.

The objective is to determine if a memory block is filled gradually or not. We only detected the
gradual left-to-right filling up, from the beginning of the block. The other gradual filling strategies,
such as the right-to-left filling up, have not been investigated. Just after the allocation of each new
block (i.e. malloc or calloc), the supply area occupies the whole memory of that block. Each
new block is initially classified into the gradual-filling category. A block is kept in the gradual-filling
category only if the first write operation is performed into the leftmost slot of the supply area and so

§The tests were performed on a 64-bit architecture. We also used the function my_get_chunk from Valgrind, which
allows to check that a value corresponds to a pointer to a block in the heap.
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Figure 13. Detection of memory blocks, which are filled gradually. Relative memory used for all arrays of
pointers. Measured just before the program exits.

Figure 14. Detection of memory blocks, which are filled gradually. Relative number of arrays of pointers.
Useless calloc detection. Measured just before the program exits.
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on. Once a write operation is out of the used area and is not equivalent to the Extend operation of
Section 2.1, the corresponding block is definitively removed from the gradual-filling category.

Figure 13 shows the results in terms of memory space. For each program we considered, the size
of the Used Area bar represents the total memory space occupied by used areas of blocks, which are
filled gradually. The Supply Area bar represents the total memory space occupied by supply areas of
blocks, which are filled gradually. Then, the No Gradual Filling bar corresponds to the memory used
by arrays, which are not filled progressively. Figure 13 shows that gradual filling is a quite common
phenomenon and that many software could benefit from the GC optimization presented before. The
best result is obtained by gcc with 44.4% of supply area (i.e. ignored by the GC), which is a
similar result to what we found for SmartEiffel (42%). Similarly, evince (29.4%), unzip (31.5%)
and gimp (39.3%) are also good candidates to benefit from this optimization. Also in Figure 13,
we see that vlc might not benefit from our optimization because 96.5% of arrays memory is not
filled gradually. Finally, for dvips, even if arrays, which are filled gradually, represent 96.3%,
our optimization would be useless because there is no supply area. Note that measurements were
made just before the programs exit. Knowing that a GC cycle may occur at any time in the life of a
program, the situation can be completely different (larger supply areas or arrays which are not yet
allocated).

When an array is filled gradually, it is not necessary or useful to initialize memory when creating
a new array. Thus, in C, it is preferable to use the malloc function rather than the calloc func-
tion, which is more expensive (i.e. in addition to what is performed by the malloc function, the
calloc function clears the allocated memory). We performed a rerun of tests of Figure 13 under
the same conditions in order to inspect how arrays are allocated (malloc or calloc). Figure 14
shows the results in number of allocated blocks. The malloc bar represents the number of blocks,
which have been filled gradually and allocated with malloc. The calloc bar represents the num-
ber of blocks, which have been filled gradually and allocated with calloc. Then, the No Gradual
Filling bar is for all other arrays of pointers. The results in Figure 14 show that the vast majority of
arrays that are filled gradually are, which is consistent, allocated with malloc. Note, however, that
for evince, 11.3% of arrays are filled gradually and are built with calloc. Similarly, emacs
(8.9%) and gcc (7.7%) have a significant number of arrays that might be allocated more efficiently
using malloc instead of calloc. One could well imagine that the memory tracking tools (e.g.

Figure 15. Java arrays benchmark. Modified Jikes RVM 3.1.3 and DaCapo 9.12-bach. Detection of
memory blocks, which are filled gradually. Relative memory used for all arrays of references.
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Valgrind), which are already looking for uninitialized memory usages, could be enhanced with the
detection of progressive filling up, in order to suggest the programmer to advantageously replace
some calls to calloc by calls to malloc.

4.4. Memory behavior analysis of some other Java programs

To complete our tests, we measured the behavior of Java programs as regards the handling of arrays
of references. As before, the aim is to know if arrays are filled gradually or not. We modified the
code of the Java Virtual Machine (Jikes RVM 3.1.3) in order to trace all write accesses inside arrays
of references. Thus, we have equipped the aastore instruction of the virtual machine, which is
the necessary step of all write operations inside arrays of references. As in previous tests, we only
detected the gradual left-to-right filling up of arrays throughout the program execution. We used the
DaCapo benchmarks version 9.12-bach [18]. Figure 15 shows the results in terms of memory space.
The Used Area (respectively Supply Area) bar represents the total memory space occupied by used
areas (respectively supply areas) of blocks, which are filled gradually. The No Gradual Filling bar
corresponds to the memory used by arrays, which are not filled progressively. The results presented
in Figure 15 clearly shows that a very large proportion of arrays are filled gradually and that the
supply area is very high (from 27.9% for jython to 54.9% xalan). Also note that, as before, the
measurement was made on completion (i.e. just before the final exit).

5. DISCUSSION AND RELATED WORK

5.1. Related work for type analysis inside arrays

Most of the work performed about arrays concerns array bound checks [19–21]. The automatic anal-
ysis of properties of array content was considered only recently. Works in [22, 23] study decidable
logics to express properties of array content. If we restrict ourselves to automatic analysis, an impor-
tant track initiated by [24] concerns verification of programs with arrays using predicate abstraction
[25, 26], possibly improved with counter-example guided refinement [27] and Graig interpolants
[28]. All these approaches make use of the property to be proved, while [29] aims at discovering
properties.

Indeed, the work presented in [29] concerns properties for one-dimensional arrays in nontrivial
programs, which manipulate arrays only by sequential traversal when the array content is restricted
to scalar (i.e. primitive) values. Discovered properties in [29] are array maximum value detection or
array copy detection or even correct insertion of some value inside a sorted array. For object-oriented
languages, it is important to address polymorphism inside arrays as well as NULL prediction inside
arrays. Indeed, it is quite common to have multiple kinds of objects mixed together with possible
NULL values inside the same array.

Concerning automatic program analysis methods based on abstract interpretation, a common ap-
proach presented in [16], for safety critical software, consists in summarizing an array with one
auxiliary variable, managed to satisfy the disjunction of properties of all cells of the array. We
adapted the array smashing method of [16] for type flow analysis, and thanks to our gradual filling
strategy, we solved its initialization problem pointed out in [29].

While traditional implementations of arrays use contiguous storage, [30–34] are splitting the ar-
ray in memory by using a discontinuous storage. To reduce fragmentation, Siebert [30] organizes
array memory in trees. To avoid tree traversal, [31, 33] use a single level of indirection to fixed-size
arraylets. [32] contemporaneously invented arraylets to aggressively compress arrays during col-
lection and decompress on demand for memory-constrained embedded systems. To remove most
indirections, Z-rays of [34] inlines the first N array bytes into the array spine. For arrays of small
sizes, the most numerous category, Z-ray avoids indirections and reaches the performance we have
for the contiguous layout. Somehow, with Z-rays, the right side of arrays (i.e. parts with indirec-
tion) looks like our supply area. However, Z-rays storage is inherent in two properties of the target
language (e.g. Java): zero-initialization of all arrays to take advantage of the zero-compression and
the abstraction of the physical representation of an array (i.e. no pointer manipulation for array
traversal).
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5.2. About the initialization of arrays and variables

An uninitialized variable is a well-known origin of bugs: unpredictable and/or randomly initial-
ized integers, invalid pointers to wrong memory locations, and so on. Furthermore, an uninitialized
variable adds uncertainty, which makes type flow analysis impossible or at least useless. As a con-
sequence, to achieve type flow analysis, the language must either force the programmer to initialize
all variables or provide default values for uninitialized variables. The C# and Java languages pro-
vide default values for all instance/class variables and force the initialization of all local variables.
For the vast majority of new programming languages, uninitialized variables are avoided, either
with languages default rules or with compile time data flow checks. For less recent languages (e.g.
Fortran, Basic or C), it is also possible to force the initialization thanks to external extra tools thus
allowing type flow analysis.

Notice that for a language like Java, without default value for local variables, the NULL situa-
tion implies that an explicit assignment with NULL exists or, by transitivity, that another assigned
expression could hold that value.

In a language like Eiffel, the default is NULL for all kinds of reference variables, that is, local
variables or instance variables, which are not of a scalar type. As a drawback, this uniform language
decision forces the use of data flow analysis to predict that a certain variable cannot hold NULL in its
type set. Here, it is necessary to take into account the order of statements, just after the local variable
declaration or inside all creation procedures for an instance variable, in order to guarantee that the
default value is always overwritten before the variable is read. Insofar as this language decision can
be considered a facility from the programmer’s point of view, it makes the work of implementing
type analysis harder. We believe that explicit initialization of all variables should be the rule as is the
case in our initialization strategy of arrays. At least, this makes it easy to perform type flow analysis.

6. CONCLUSION

We have shown how it is possible to optimize garbage collection of arrays by ignoring the supply
area, usually present in flexible/resizable arrays. We have considered several kinds of resizable ar-
rays: leftmost zero indexed, user-defined indexing, circular arrays and hash maps. Each kind of array
is described as an abstract data type also including a customized marking procedure for the GC.

We have presented a simple technique to analyze the type of elements that are stored in arrays.
That analysis does not take into account either the order of elements in the array or the index varia-
tion. The whole array, composed of many cells, is considered as a single polymorphic variable. We
have shown that the gradual filling up of the array, cell by cell, facilitates detection of the NULL

value inside the array.
We measured the impact of our array manipulation strategy during the bootstrap of the SmartEif-

fel compiler. On that large piece of code, our technique avoids scanning 42% of the memory used
for arrays of references (Section 4.1).

Thanks to our technique of type flow analysis inside all kinds of arrays, our Lisaac compiler is
able to carry out a true global analysis. Roughly, we measured that 98% of the variables do benefit
from array type flow information. We also measured that 56% of arrays never hold NULL values.
Furthermore, the level of polymorphism in arrays is significantly reduced (Section 4.2).

We also measured on some other large well-known applications, written in C or C++, that the
ratio of arrays using gradual filling is often similar to the one encountered in SmartEiffel or Lisaac
(Section 4.3).
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